商业模式不清晰、难“变现” 大数据离盈利还有多远
在多数行业,大量的数据仍因缺乏可运营的商业模式而“沉睡”,无法盈利成为大数据产业化发展的瓶颈——大数据离盈利还有多远
“未来早已来到我们身边,只是分布还不均匀。”这是清华大学副校长杨斌对大数据领域现状的概括,他认为大数据已在我们身边,而非仅是对未来的幻想。
在4月10日至11日由清华大学、贵州省经信委等单位主办的2014中国“云上贵州”大数据商业模式大赛总决赛上,的确涌现了很多实用的大数据应用,获奖者们还分享了贵州省政府所提供的2000万元扶持资金。然而在多数行业,大量的数据仍因缺乏可运营的商业模式而“沉睡”,无法盈利成为大数据产业化发展的瓶颈,大数据离“变现”究竟还有多远?
商业模式不清晰、难“变现”
农业、建筑、旅游、金融、健康、公共服务……涵盖诸多领域的大数据应用在“云上贵州”大数据商业模式大赛上层出不穷。其中,获得一等奖的“东方祥云”项目设想为全国15万座水电站、水库提供免费来水预报,帮助合理调度用水,据估算可为这些单位信息化改革节省90%的成本;而“淘数”则设想建立网上数据商城,出售具有商业价值的数据;“蜂能”则试图通过智能用电终端采集设备用电数据,进行节电和需求优化管理,预计可实现节约用电10%~20%。
这些大数据的“新玩法”可谓超乎想象,但大数据的利用价值远不止如此。以中国公路物流行业为例,其市场价值已达亿万级,而90%以上运力为个体车主,空驶率达30%以上,集约程度较低,浪费了物流资源。如果依托大数据技术开发出集中运力的手机APP,就可提高配置效率,降低运输成本。然而,目前这一领域的手机APP多达200款,但能真正实现盈利的寥寥无几。
能持续盈利才能发展壮大成产业,这是大数据亟须“变现”的原因。但在大多数行业,大数据还没有找到适合的位置,“变现”难是大数据领域普遍存在的焦虑。“我们最关注盈利模式清晰,易于操作的大数据应用,但这恰好也是目前比较欠缺的。”赛伯乐投资公司董事长朱敏说。
数据壁垒制约产业化进程
在“云上贵州”大数据商业模式大赛上,贵州省向参赛者开放了智能交通、智慧旅游、电子商务、电子政务、食品安全、工业和环保7个领域的真实数据,成为我国首个开放政府数据的省份,这些真实的数据不仅吸引了众多抱有创业梦想的参赛者,也吸引了百度和阿里巴巴这样的互联网“巨鳄”。
“丰富的数据资源是大数据产业发展的前提,也是贵州这次大赛最吸引人的地方。”阿里巴巴副总裁涂子沛说,他认为贵州省政府对大数据的开放,是“拥抱了未来”。
“投资大数据领域所要考察的关键因素包括对行业的渗透特性、创业者对大数据的理解能力、行业小气候、商业模式实现的难易程度等。”清华大学数据科学研究院执行副院长韩亦舜说,这些都需要数量巨大且真实的原始数据作为支撑。
然而,由于经济、观念等原因,我国政府、企业和行业的信息化建设往往缺少统一规划和科学论证,各部门所拥有的信息缺乏统一的标准,形成了众多“信息孤岛”,而且受行政垄断和商业利益所限,数据开放程度低、共享难,也是目前大数据产业化发展公认的最大障碍。
需营造适宜生态环境
大数据的浪潮已经影响到了世界上很多企业。根据科尔尼咨询公司的研究,在过去两年中有超过45%的公司实施了商业智能或是大数据计划。在中国,围绕“数据财富”的鏖战已经打响——广州的“天云计划”,哈尔滨的“中国云谷”,鄂尔多斯的“草原的云谷”,北京的“祥云工程”,目前全国有20多个地区都开展了围绕大数据的云产业部署。
工信部软件服务业司司长陈伟认为,贵州所举办的“云上贵州”大数据商业模式大赛略显不同,“它推动了大数据从学术研究向商业实践的转变,为大数据的商业进程开了一扇窗,是大数据产业发展的正能量”。
尽管如此,大数据要“变现”,仍需要多方努力营造更加适宜的生态环境。
“首先要改变对数据隐私权的认识,隐私边界的界定是动态过程,绝对的隐私权保护体现的是世界静止观。”杨斌说,而极端的隐私保护会“以一种较为粗暴的方式”制约产业的发展。
他还呼吁企业开放其大数据资源,“如果中国银联愿意开放数据库,哪怕只是5天的数据片段,其开发结果可能是诞生一个远离金融但对民生产生重大影响的应用。”在他看来,大数据商业模式是难以预设方向的,而这才是包容智慧的力量。
中国工程院院士、国家信息化专家组咨询委员会委员邬贺铨认为,政府数据资源在安全前提下逐步有序适当开放,也有利于提升公众服务和社会管理,营造创新环境和释放商业机会,市民、企业和政府都将从中受益。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21