揭秘加多宝“百家姓”罐背后的大数据布局
近段时间来备受热议的加多宝换装传闻再有劲爆新料。
据百度知道上一位网友透露,在加多宝换装传闻甚嚣之时,除了密锣紧鼓推进纪念罐包装设计外,最近加多宝还与全球第三大的数据供应商TeradataAster以及和亚马逊合作的MapR技术公司频频接洽,计划在推进纪念罐上市时同步进行大数据营销新布局。
据悉,加多宝将与百度、淘宝、京东以及顺丰等平台进行大数据合作,在全国5万多家消费终端进行消费者数据收集,首次利用大数据——DMP(Data-ManagementPlatform数据管理平台)+LBS(LocationBasedService基于位置的服务)+CDIM(CrossDeviceIdentityManagement跨屏识别管理)技术,实现真正的O2O+F2C(Factorytocustomer从工厂到消费者)现代化终端销售。也就是说,通过“百家姓”罐、十二生肖罐、十二星座罐、十二色彩罐等纪念罐及LBS的信息收集,加多宝将充分运用大数据技术,建立精准的用户画像模型,与消费者彻底“玩”起来。
对此,北京一位不愿具名的数字营销专家表示,加多宝此举意在颠覆国内快消行业的零售模式。一旦此DMP+LBS+CDIM模式实现后,加多宝或将成为快消行业的第二个NIKE+。
新技术永远是洞察用户行为最有力的工具。在互联网逐渐步入大数据时代后,企业及消费者行为也将迎来一系列的改变与重塑。而在当下的“互联网+”模式下,消费者的一切行为在企业面前似乎都将是“可视化”的。怎样利用大数据来为更好地实现精准营销,进而深入挖掘潜在的商业价值,是当前所有企业面临的问题,而传统的制造及零售业更是走在了前面。
对于营销者来说,过去的AIDA(AttentionInterestDesireandAction)漏斗以及传统的CRM(CustomerRelationshipManagement客户关系管理)模式已不再适合当下的市场环境。像加多宝这样的企业,其过去实现目标市场全国性铺货的终端覆盖能力,固然让快消行业的小伙伴们都惊呆了,不过,随着“互联网+”时代的到来,如何进一步获取精准的消费者信息从而优化销售决策也为加多宝等快消行业巨头带来挑战。
“2015年最新的数据显示,人口最多的前100名姓氏当中,第一大的李姓拥有人口已超过9500万人,占全国人口总数的近8%,集中分布在河南、四川、山东三省;但百家姓最后一个的文姓,人口只有100多万,占比仅约0.14%,分布也比较散,所以如果加多宝要全国铺货‘百家姓’概念罐新品,会对线下终端渠道带来极大的难度。”上述数字营销专家分析指出,零售策略设计是零售业大数据价值最大的地方,也是大数据可以直接为企业提供支持的业务。不过,在快消行业中,除了关注整体的用户及销售数据外,关注单一品类及单一商品的数据以及地域性数据也显得尤为重要,而且这些数据的获得离不开线下终端的参与。因此,基于DMP+LBS+CDIM模式的消费者资料整合,将对解决终端仓储和物流问题提供重要的支持。而这也是加多宝布局大数据的必要组成部分。
“某一地区某一品类在一定时期内的销量,订单数,金额,以及退换货率等数据,将有助于后续的运营,营销或者促销的选择。”该营销专家补充称,CDIM是“数据驱动型营销”的中心,通过跨渠道、跨屏的数据收集方式监测用户的行为和信息,并从业务视角对数据进行全方位、透彻的分析来驱动产品,运营及市场策略的调整,从而提高ROI(ReturnOnInvestment投资回报率)是零售业互联网大数据应用趋势。
据了解,海外巨头亚马逊、ZARA以及国内的京东、顺丰优选等企业都特别重要这些珍贵的消费者资料,除了应用在生产端,同时还在客服中心、行销部、设计团队、生产线和通路等部门和团队使用,并据此形成各部门的KPI,完成内部的垂直整合主轴,实现从“挖掘”顾客需求进展到要能够“创造”消费需求的转变。
在快消行业里,最被熟知的一个案例当数亚马逊的EMR(ElasticMapReduce)模型,此外,还有从几年前就开始被经常吹捧的一个的案例——Yelp通过整理其巨大的编辑日志文件,以寻找隐藏的关联性。倘若加多宝成功推行DMP+LBS+CDIM模式的资料整合,可以预见未来国内的快消圈,除了产品上的研发能力外,线上及线下终端渠道结合的数据大战将是更重要的隐形战场。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28