移动大数据的三大核心 实时、适时、全时
我们应该清醒认识到,商业的基础正因移动互联网的普及而改变。
美国一家初创公司Appsee提供的移动产品分析中有些功能很有意思。 例如使用“use recording”(注意不是收集)录下用户使用app时的行为包括点击、滑动、 放大、摇一摇等各种动作, 通过动作了解用户兴趣、意向和需要。
移动带来的变革远远超过数据分析,但最为敏感的可能就是数据分析了。如今,你是否已经用全新的角度去思考无线业务做得好不好?移动大潮之下,每个公司都要从上到下重新思考。
不过,当数据从传统桌面计算机转到移动终端时,我们往往会遇到两大误区:
第一个误区:把手机当作一个新增的媒体渠道
把手机当作类似另一个屏幕,这是完全不够的。手机上作为一个功能设备产生的行为数据,不仅仅有时间维度,还有空间维度和社交维度,这么多维度迭加在一起,分析的层面和方式也远远多于传统网页。
第二个误区:用同样的方式来考评桌面计算机和移动终端;
在桌面计算机上,我们更关注流量转换的指标;而移动终端更在乎的是参与度,例如用户在一个app的停留时间、是否愿意接收提示、版本更新等。手指讯息如点击、滑动、 放大、摇一摇等在无线时代均会成为关键。
3T是移动数据的核心
跟大数据的4V(巨量、多样、速度、价值)比较,移动大数据的核心更着重于:实时 (real time)、适时 (right time)、全时 (all the time)。任何一个完整的高效服务都离不开这3个T。
拿零售业作例子,Real time是指实时数据的获取和推送能力;未来我们将通过手机,或者是智能穿戴设备赢得越来越多「接触」用户的机会。这些机会将为我们提供大量的时空讯息,将每一刻感知到的用户数据延续,就是 all the time 。
但有了这种感知的能力之后,你怎么知道甚么时候是推荐服务的最佳时机 (right time) 呢?这时就必须要有all the time的数据收集,才会知道用户的需求规律,才会知道营销的关键点并做到有效触达。
只有在俱备三个T的能力下,你才能明确在甚么地方,甚么时间点,给甚么样的用户,甚么样的特别优惠。因为你已经熟知用户的过往购买习惯、消费习惯,甚至行路习惯,所以才会知道,明天下午一点半,推荐一杯半价咖啡给他将是非常有效的促销方式。
全新的数据关系
最大的数据来自最小的设备。手机会变的越来越智能,他可以“感受”,可以处理文字图像,可以通过网络连接你身边的一切。这是最完美的集中,这不是一种创新,而是一群创新。
未来没有谁会比手机更了解你,它甚至会了解你的情绪,超出了自然语言。手机将会成为你的数据收集者,也会成为你的数据守门员。手机可以判断可以将哪些数据分享给哪些商家。而商家自己都不用建立数据库,它的数据存在每个人的云空间,只要被授权就可以拿出来使用。
这将会是用户、数据和商家之间一种全新的关系。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21