专访英特尔中国研究院院长吴甘沙:期待数据开放带来真正的大数据时代
吴甘沙,2000年加入英特尔,2011年晋升为首席工程师,同年他共同领导公司的大数据中长期技术规划。在英特尔工作期间,他发表10余篇学术论文,有22项美国专利,14项专利进入审核期。
在英特尔中国研究院院长吴甘沙的微博上,有一句英文的自我简介,可大致译为“勇敢而与众不同地思考大数据”。自2011年担任英特尔首席工程师以来,他一直主持研究院大数据方面的研究。站在大数据思维和技术研发“潮头”的他认为,研究大数据的乐趣在于“当大多数人在考虑第N个阶段的时候,开始考虑N 1个阶段”。
当前,贵州也站在了大数据产业的“潮头”。而环顾全球,大数据正以燎原之势,从一个热词迅速转化为科研院所、政府、企业、个人共同关注、研究、应用的对象,一种新的生产力正蓬勃兴起。贵州、贵阳要引领发展趋势,对话大数据专家,从他们那儿汲取智慧是一种事半功倍的途径。为此,记者近日专访了吴甘沙。
大数据是指数社会的蛋白质
“如果以世纪之交作为分隔线,上世纪的数据文化、思维和方法论还停留在前大数据时代,真正意义上的大数据思想本世纪初才破茧而出。”吴甘沙说。
“2012年,大数据成为显学。”吴甘沙介绍,这一年,达沃斯的《大数据,大影响:全球发展的新可能》和奥巴马政府的《大数据研发计划》共同确立了大数据在世界范围的战略位置,而涂子沛《大数据》和舍恩伯格《大数据时代》在国内的出版,也使2012年被称作中国的大数据元年。
对于大数据,吴甘沙常常理解为:“摩尔定律是指数社会的基因,而大数据是指数社会的蛋白质。”上世纪60、70年代,英特尔创始人之一的戈登·摩尔提出:当价格不变时,集成电路上可容纳的元器件的数目,约每隔18-24个月便会增加一倍,性能也将提升一倍。这一定律常常被用来形容信息技术进步的速度。而吴甘沙认为,随着移动互联时代的到来,数据爆发式增长在量上也越来越符合摩尔定律的指数递增规律。
“基因决定生命特征,是初始点,而蛋白质是生命的物质基础,是生命活动的主要承担者,也就是说,大数据会越来越像原材料,像货币,变成社会生命活动的主要承担者,关系到每一个人的数据化生存。”吴甘沙断言。
他进而举例说,在大数据、云计算、移动互联网和物联网等现代前沿信息技术之中,大数据是根本和核心,云计算是方式和手段,移动互联网、物联网则是物化大数据和云计算价值的应用。
大数据发挥作用的关键在于数据开放
当下,“互联网+”这一名词及其对应的发展趋势正方兴未艾,而吴甘沙则提出了“大数据×”这一说法。他说,大数据与很多传统产业融合在一起能够产生乘法效应,不同产业之间融合还能产生数据外部效应,即一个产业的数据如果用于另外一个产业,能迸发出巨大价值。
在研究中,吴甘沙越来越发现,乘法效应要充分发挥,必须走数据开放之路,让不同领域的数据真正流动起来、融合起来。“最开始,大数据的主要矛盾是互联网公司或在线数据太多的问题,接着,主要矛盾变成人没有能力从数据中提取价值的问题,最后主要矛盾变成中小公司、传统行业无法获得数据,数据孤岛的问题。”吴甘沙说,正因为如此,最近四五年,他个人的研究方向也从关注数据与机器的关系到关注数据与人,再到眼下关注数据与数据的关系。
那么,哪些数据适合开放呢?吴甘沙认为:“不涉及个体的公共数据和科研数据都可以开放,涉及个体的数据要明确数据权属、隐私界定,获得拥有者授权,采用技术匿名化之后再考虑开放。”他同时建议,可以借鉴英美,开放原始数据,而非提炼数据,保证数据满足蒂姆·伯纳斯-李提出的数据开放五星标准。
目前,贵阳正通过宽带贵阳和全域公共免费WiFi城市建设,推动社会企业和个人动态数据的“块”上集聚。吴甘沙认为,WiFi采集数据的优点就是有数据发生所在地点的信息,方便把数据放到不同的语境中分析。但他也坚持,在数据集聚之后,同样需要明确获得用户对数据的授权。
数据交易定价机制仍待实践中摸索
广义的数据开放还包括数据的共享及交易。吴甘沙认为,在大数据时代,如何让数据变成政府决策、企业经营的第一要素,数据的交易显得尤为关键。
4月14日,贵阳大数据交易所完成了首批交易。在吴甘沙看来,这样一个基于市场进行价值发现和定价,连通大数据供需双方,让数据像股票交易那样高频率碰撞的交易市场,在大数据时代是大势所趋。
但他同时指出,无论是数据的交易,还是交易过程中数据的定价,现在都没有标准的答案,“一来要从实践中摸索,二来要有意识地跟经济界做思想碰撞。”他举例说,数据在公开市场交易的时候,是根据市场价值发现机制来定价,根据数据的种类来定价,还是根据数据访问API的调用次数来定价?企业的数据资产价值几何?个人数据是否也需要定价,它的价值是不是应该由个人自己来享受,而不是完全让互联网服务提供商从中获益……
尽管这些困惑尚无定论,但吴甘沙认为这也正是大数据的魅力所在。对于大数据,深耕多年的他认为,乐趣在于“当大多数人在考虑第N个阶段的时候,开始考虑N 1个阶段”。
对于正在争先发展大数据的贵阳,吴甘沙认为过去一年多的工作“非常棒”,他同时给出建议:要想在与北京等发达地区发展大数据的竞争中不落伍,人才聚集和可持续的供给非常关键。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28