别急着用"大数据物联网"应对公共危机
发生在昨夜今晨的上海外滩踩踏事故,伤亡人数正在不断上升,事件的进展无时无刻不在撕扯着每一位看到消息的人的心。
类似踩踏事故在中国历史上绝对不是第一次发生,并且也很难乐观地估计这就是最后一次。之前的事故,有的发生在学校当中,有的发生在类似的场合。10年前,北京密云元宵灯会发生踩踏事故,死亡30余人,第二年同一地点继续举办大型活动。
我觉得看到事故发生就批评政府是很容易的,但是,如果说到以后该怎么办,始终也没有一个答案让所有人都满意。现在,互联网上同时充斥着两种声音:一种是质疑政府以及警方为什么明明知道跨年属于高风险活动依然动作迟缓,另一种声音则是害怕当局借着这起事件,直接取消跨年和春节庆典了事,甚至可能展开不知道针对什么领域的更严格管制。多种声音之间似乎是难以调和的。
作为科技从业者,我的朋友们试图通过科技的手段,来为日后这类问题的解决提供一些参考。比如有人提出,在人流密集场所可以使用大数据,动态视频监测,物联网等等功能的综合运用,来进行人流的监测和管控。但是我想指出的是,尽管这是站在了我们本职工作的立场上,但这的确不是重点。
早在完全没有这些技术的时候,中国也已经建立了行之有效的预案来进行危机干预。2008年是不会存在什么智能硬件,物联网,大数据这些东西的,当时甚至连微博都没有。但是我们国家依然办了一届“无与伦比”的奥运会,包括安保方面也是树立了一个新的标杆。
在需要的时间和地点,中国有能力处置任何形式的危机事态。如果重大活动是有预案的,那么处理起来就会更加得心应手。在北京奥运之后,中国又办了一系列的大型展会活动,这些活动无一例外地平安结束。
过去的一年,中国多地的确发生了由暴恐分子策划和实施的恐怖袭击。但是在这些袭击行动过后,受到波及的城市都加强了安保级别,当地民众也逐渐从阴影当中走出来,不再把袭击阴影当回事。这能够说明的问题就是,不管是跨年夜的踩踏事故,还是更严重的恐怖袭击,中国都是完全有能力预防和处置的。而危机的发生,只能说是当局没有足够重视起来的结果。
今天早上,我曾经试着比较过在上海、纽约和香港这三个比较典型的都市,人们过大型活动的时候,安保方面是否有值得注意的不同。
在上海外滩,纽约时报广场,香港的兰桂坊,这些地区的面积,高峰时的人数,以及具体安防力量和手段都各不相同,但非常明显的一点是,没有哪一个地方是明显落后于另两个地方的。跟世界其他任何地方比起来,中国在安保方面的努力和积累的经验都毫不逊色。
但上面这句话的前提是——中国一定要“认真”起来才行。如果因为要管的东西太多,根本就疏忽了,或者没有提高到应有的高度,只当做一般的公众活动处理,那就不行。从不同媒体的报道和亲历记录看,在悲剧发生前半个小时甚至更久,危险局面就已经出现。在其中的人们已经本能地意识到风险,然而此时的安保力量,跟几个月前的亚信峰会铁桶一般的警卫相比,却是如此孱弱。
在危机管控方面,有人非常准确地总结了长期以来的状况:“一抓就死,一放就乱”。在平时可能不太注意的场合,安保力量不会对局面有完全控制力,可能也没有分派足够的保安力量。但一旦局势失控,出了大问题,上升到特别重大的公共安全事件,事情就会完全不一样。一轮又一轮的责任追查下来之后,会在起码半年到一年的时间之内,让社会各界都绷紧安全这根弦,所有跟安全有关的部门如临大敌,直到危机迟迟不重演,人们再度松懈下来为止。
我们的政府在安保方面,就像进行其他关乎国计民生的工作一样,总是想要举全国之力,动员一切可以动员的力量。这样做当然时间短收效快,但是其负面作用是要“举国”的东西实在太多了,应接不暇,总有那么一些领域会被忽视,一直到出了不能视而不见的大问题,然后再次成为新的“举国”重点。
从根本上让安保“常抓不懈”,“警钟长鸣”,降低发生公共危机的几率和破坏程度的方法,就是充分将可下放的管理权限下放,把这些事情交给专业的机构来打理,让社会上真正有志于,也比较有能力解决公共安全问题的专业人士来处理。在按照订单保质保量的完成工作的同时,专业机构也应如同在政府内部一般,获得各种资源的使用权限。
去年,全球各地都有推动用民间力量助力政府进行公共管理的“开放政府”活动。在印尼雅加达,当地市政府公开了一些不涉密的动态信息API,如交管部门测得的车流量,气象局的详细天气数据等,鼓励民间开展编程比赛,创建第三方应用,改善政府网站的设置。香港有专门的非政府组织推动了香港天文台等政府部门的数据开放。
在中国大陆,由政府主导的“智慧城市”计划和企业联姻,一些企业贡献了云存储空间和技术手段,帮助政府升级办公平台。这样的经验,完全可以复制于包括安保在内的更多政府目前“大包大揽”的事务上。
等政府不像现在这么“日理万机”的时候,让专业的人来做需要专业能力的事,也许对安全真正“永不懈怠”的追求,就有达到的一天。而在此之前,我们每一个人能做到的最简单的行动就是——别去人多的地方。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20