解读《大数据时代》:复杂世界的数据观_数据分析师
《大数据时代》给出的大数据时代的第二个特征,是“不是精准性,而是混杂性”。这是一个相当难以理解的分割方式。虽然看一个个的案例,读者似乎明白了,可是放下书,却又疑上心头:为什么大数据时代不要精准性?精准性与混杂性之间有必然的对立关系吗?
如果说第一个特征中的“随机样本”和“全体数据”(记得实际是数据库的概念)的概念我们还能够从迈尔大叔的叙述中得以澄清,这里的“精准性”和“混杂性”就要认真考证了。
何为精准性?
迈尔大叔有关精准性的论断,应该是对小数据时代数据匮乏的藐视:你们这帮屌丝,撅着屁股捡钢镚,俺们土豪100元从来都不要找零的!小数据时代数据少啊,每个数据都当个宝,斤斤计较数据的精度。
“执迷于精确性是信息缺乏时代和模拟时代的产物。在那个信息贫乏的时代,任意一个数据点的测量情况都对结果至关重要。所以,我们需要确保每个数据的精确性,才不会导致分析结果的偏差。”
我们来看看迈尔大叔提供的有关精准度的案列,后面讨论用得着。
1)量子力学的”测不准“原理;(测不准即不精准,可这和大数据时代哪是哪儿呀?)
2)桥梁压力检测数字增加1000倍,错误率也会增加;(怀疑“错误率”是“错误数”的表达错误。错误率是错误的比例吗?如果错误率随着数据数量的增加而增加,那大数据还会准确吗?或许我真的被大数据时代OUT了。)
3)语音识别呼叫中心投诉的错误;(终于能够理解一个案例了!)
4)葡萄园N个温度计测量温度;(这是通过统计增强精准度。)
5)Forrester认为“有时得到2加2约等于3.9的结果,也很不错了。”(没有背景资料,不敢妄加判断。不过总觉得心悬悬的,你是否担心生活在一个“2加2可以约等于3.9”的社会里呢?)
6)微软研究中心寻求改进Word程序中语法检查的方法;(这是利用大数据来改进分析的精准性!)
7)BP炼油厂无线感应器网络数据;(又是一个大数据降低统计误差的案例。)
8)Facebook上的“4000个赞”和Gmail“2小时”计时;(神一般的大数据及其不精准性说明。)
9)Hadoop与Visa的算法。(这是一个如何牺牲分析结果的精准性以缩短所需分析时间的案例。回到迈尔大叔有关大数据时代的第一个特征,即使有了全体数据,必要时也要牺牲部分数据而争取时间。)
到此,可能能够理解为什么读这一小节这么困难了:迈尔大叔想告诉我们精准性不重要,可是他举的例子,却实在是有点“暧昧”不清。他究竟是想说数据的精准性还是数据分析结果的精准性呢?
何为混杂性?
“不是精准性,而是混杂性”。与混杂性所对立的精准性,原来不是迈尔大叔在描述精准性时以“2+2可以约等于3.9”时告诉我们的那个数据分析结果的精准性,而是数据的精准性。
“执迷于精确性是信息缺乏时代和模拟时代的产物。只有5%的数据是结构化且能适用于传统数据库的。如果不接受混乱,剩下95%的非结构化数据都无法被利用,只有接受不精确性,我们才能打开一扇从未涉足的世界的窗户。”
我们看到,在谈到大数据时代的混杂性时,迈尔大叔基本上都在谈论数据的混杂性(而不是数据的不精准性)。我们来看看混杂性的案例:1)对IBM称呼的混杂;2)谷歌翻译语料库;3)MIT研究项目;4)Flicker图片标签;5)新的数据库设计;6)ZestFinance。
说实在话,有关大数据时代混杂性的问题,因为有了前面对精准性的描述,一下子还真是被迈尔大叔给蒙住了,反复读了数遍,才理解。原来迈尔大叔所说的混杂性,是指数据格式的不统一。上面6个案例中,除ZestFinance外,基本上是讲数据格式的不统一或者数据来源纷杂。这的确是我们这个时代数据的特征。恭喜迈尔大叔终于说对了!
而ZestFinance则是指在数据不完整或者数据有错误的情况下如何处理数据的问题,这和大数据似乎没有太大的关系,与数据的混杂性也没关系。不过我们在此回忆一下,似乎除了随机样本问题外,迈尔大叔几乎不谈数据统计的技术细节。比如说,ZestFinance是如何处理数据缺失以及数据错误的呢?我真的很好奇。
精准性与混杂性的辩证
一般来说,“不是....。.而是....。.”的语句,应该是指同一事物的不同状态。比如“不是晴天而是下雨”,或者“不是田埂而是小溪”。如果你来一句“不是晴天而是小溪”,就显得难以理解了。
就统计学角度来看,数据的精准性是一回事,数据的不同格式(混杂性)是另一回事。格式混杂的数据,通过处理或许是能够精准的。
格式混杂的对立面是数据格式的统一。格式统一的数据或许可能也是不精准的。比如说迈尔大叔所列举的葡萄园测量温度以及BP炼油厂的感应数据。
另一方面,就精准性而言,数据的精准与数据分析结果的精准也是两个不同的概念。比如说,“2+2约等于3.9”是数据分析结果的不精准,而葡萄园温度测量和BP炼油厂的无线感应器网络数据的例子,则是指数据不精准但是因为数据多而克服了少量数据不精准的缺陷而使数据分析结果比较精准。
数据格式的混杂与统一,数据的精准与数据分析结果的精准,迈尔大叔都胡子眉毛一把抓了。
怎么理解大数据时代是十分重要的。大数据时代的特征是“一切皆为数据”,那么数据来源的多样性以及数据格式的混杂性确实成为一个大数据时代显著的特征。但是,这个特征的对立面,可能更应该是数据来源以及数据格式的单一性。
数据的混杂性需要更成熟的分析手段来分析,分析的结果也可能不像我们传统的那样丁是丁卯是卯。但这些应该是数据分析师的工作,而不是我们这样的屌丝们所需掌握的本领。
或许,我们可能更应该从屌丝的角度来归纳大数据时代的特征。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21