大数据:通过设备行为分析降低支付风险
从2012年起,大数据的话题在中国互联网以及各个行业开始大热,据说2013年已经被国外媒体称为“大数据元年”。除了最常规的用户挖掘、广告价值提升,大数据被用来制作热门电视剧,建设医疗机构,甚至帮助奥巴马连任等各种神话已经层出不穷。但互联网最最基础的一项工作——安全工作,似乎一直跟这股潮流没什么关系。
很多人的印象中,互联网安全无非就是装个杀毒软件,网上支付的时候最好再拿个硬件盾(U盾)心里才能踏实点。一出问题,得出互联网始终还是比传统世界不安全的结论,那是必须的。我们搞互联网安全的,有那么没有技术含量吗?这里简单给大家介绍下网上支付控制风险的一个利器——正是现在所有人热捧的大数据。
传统安全认证方式及其问题
之前有人说“在互联网上,没人知道你是一条狗”,这种“身份不确定性”对于互联网金融服务来说,是一个永远的风险。网络钓鱼、木马传播、账号窃取等带来的盗用和欺诈都是这种风险的直接体现。
所以,就有了人们最熟悉的几种安全认证手段:一是用户所知道的东西,比如密码;二是用户所拥有的东西,比如数字证书、硬件盾。他们的本质都是,当支付服务接收到支付请求时,为了减低支付风险,服务端要先确认支付发起者的身份是合法的。
但以上两种方法都会遇到一些障碍,比如密码容易忘记,有些人所有应用都用同一个密码,密码还可能存在泄露的风险。这一点,2011年底的CSDN密码泄露事件就给了所有人一个警示。
数字证书和硬件盾的问题在于,更换电脑或者重装系统之后,电脑中没有数字证书,用户就会无法支付,而硬件盾可能丢失或者损坏,发生这种情况,用户也会无法支付。这也是至今很多用户都没有选择这些安全产品的原因。
第三种现在广泛使用的安全认证方式是手机检验码。 用户在电子商务网站、网上银行或者第三方支付网站预留手机之后,就可以在需要进行身份确认时接收动态验证码。 手机有良好的携带性、私密性,手机短信的达到率可以达到90%以上。因此手机短信动态验证码被电子银行和第三方支付大量使用。
在手机短信验证码被大量使用之后,不法分子也开始针对性的展开攻势。钓鱼网站、电话的方式骗取验证码甚至成为一个黑色产业链,对电子商务环境造成很大的负面影响。
举个真实的案例,支付宝为了防止不法分子冒充工作人员向用户骗取手机校验码,曾经在发送短信校验码的短信文案中明确写到“淘宝或支付宝工作人员不会向您索取短信校验码”。有一次,一位用户接到一位假客服的电话,假客服以帮她处理交易为由向她索取校验码,这位用户跟假客服说,“短信里面说了工作人员不会向我索取短信校验码的。”假客服可能也是灵机一动,回答说,“我不是淘宝和支付宝的,我是卖家。”这位用户就把校验码告诉假客服了。为此,支付宝只好更改了短信校验码的文案,明确说明“任何索取短信校验码的行为均是诈骗行为。”
即使这样,用户被骗取短信校验码的情况还是不能绝迹。因为这类非法骗取验证码的行为很多是有组织的实施,加上受害者的防范意识比较薄弱,成功骗取的概率始终是存在的。电子银行和第三方支付想要很好的控制这种非法行为,存在很大的难度。
设备行为分析的优势:你可以易容,但你的行为特征很难改变
为了降低支付风险而引入了身份认证,但是身份认证过程本身也存在被攻击的可能性。那么,能否减少网络行为中的“身份认证”环节呢?
答案是肯定的。不法分子可能通过各种方式掌握你的密码,骗取你的校验码,但他要完全使自己的行为特征跟你相似,那就要难得多。就好像整容很容易,但要改变你的行为特征却很难一样。能够通过这样的数据化、技术化的手段去控制风险,这就是互联网做安全的优势。
事实上,通过对用户支付行为的习惯数据进行分析来进行身份认证,可以很好的减少在支付过程中身份认证对用户的打扰。
用户在网络上的行为都会留下“信息”,比如在什么时间支付、购物的金额、使用什么样的网络。
行为在一段时间之内形成规律,就好比某个人习惯用左手写字。通过分析这种行为习惯,就可以知道用户的真实身份。
网络行为一般包含5个方面的因素:在什么时间、使用什么设备、账号、登录什么网站、做了什么。
在网络上,一个人能获取到的设备是有限的,一般是办公室电脑、家里电脑、手机等。如果在一个“可信”的设备上登录系统,那么当前行为的可信度就较高。那么设备又是行为分析中的关键点。
我们可以给每个设备一个“可信度”,用户的行为与设备进行关联,每次用户的行为都可以动态的改变“可信度”。
一次可信的、合法的行为会增加可信度,一次不可信的、非法的行为会减少可信度。而增加和减少的“度”,是通过一套复杂的模型,采用机器学习的方式获得。这样就围绕设备形成一个闭环,“输入-处理-输出-反馈”。
除了可以改变用户直接使用的设备的可信度,甚至还可以通过“设备”与“设备”之间的关联关系动态改变设备的可信度。比如,用户A使用手机A,使用声波支付给用户B的手机B转账1000块,那么除了手机A的可信度提升,手机B的可信度也可以相应提升。 分析设备直接的关系同样也可以建立一套复杂的模型。
因为用户网络行为会映射到设备的操作行为,所以通过对设备可信度的分析,就可以知道行为的风险有多高。而且这个过程中,不需要用户主动安装数字证书或者硬件盾,不需要接收校验码,对用户的体验也会有明显提升。
随着移动互联网兴起,地理位置定位、加速度感应等成为主流智能手机的标准配置。智能设备上的传感器,就好比人的五官,不断的采集周围环境的信息,这就为设备行为的分析提供更丰富的数据。这些智能化的设备散步在世界的每个角落,分分秒秒都在生产和传输信息;未来的挑战,不是用于分析的数据不够,而在于对如此庞大数据的储存和分析能力。
通过设备行为分析的方式去控制风险,只是通过大数据的方法去进行风险控制的一种。在国外paypal就没有数字证书、硬件盾这样的安全产品,就是靠分析用户与设备的行为去控制风险。中国的环境下,用户对安全的要求更高,安全感也更差,之前国内领先的第三方支付公司更多还是采取安全产品、校验码这些用户能够明显感知到的安全认证方式。但设备行为分析这样的新方式也已经开始起步。
还是那句话,这个世界上没有绝对意义上的安全,互联网上也是如此。但不论是要降低风险发生率本身,还是要提升风控过程中的用户体验和效率,互联网的方式、大数据的方式都要优于传统方式,这就是时代进步的必然。大家既要看到问题,也要看到这样更积极的一面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31