企业互联网时代 大数据管理的挑战与建设方针
近日,用友集团iUAP中心召开媒体沟通会,就企业面临的数据管理挑战,分享了用友对企业大数据分析关键特性与建设原则的看法,并阐述了用友大数据产品“用友BQ商业分析平台”的特点与价值。笔者就用友网络科技股份有限公司助理总裁兼集团iUAP中心副总经理谢东的分享,对企业互联网时代大数据处理与分析面临的挑战与建设方针进行了整理。
用友BQ(Business Quotient)是基于UAP平台的商业分析平台和应用套件。它是一个综合的商业分析平台产品和工具集,能够帮助企业将各类数据进行整合分析,并可通过查询、报表、报告、多维分析、仪表板、移动分析、嵌入式分析等丰富的可视化分析和展现方式为客户提供灵活直观的交互分析能力和信息展现能力。
谢东在会上表示,企业互联网化正在迅速渗透到企业以及企业所处产业链和生态圈,借助互联网能力企业可以更容易与前端供应商、服务商,包括后端的客户、最终客户建立密切的联系。在此过程中,新业务模式如供应链优化、智能制造、产业链协同、电子商务以及电子商务里细分的B2B、B2C、O2O等新业务模式正在不断兴起,并迅速发展。这个过程中,企业数字化过程得到迅猛发展,同时越来越多的企业内部运营管理系统更快走向移动化、云化、数据化。
用友网络科技股份有限公司助理总裁兼集团iUAP中心副总经理谢东
企业数据发展变革与挑战
企业业务互联网化必然依赖企业内部各类元素的数字化,而企业对数字化信息处理能力是支撑企业互联网化的一个基础。企业各类数据的总和构成了企业在数字世界中一个完整的画像,企业大数据正成为企业的核心资产,企业需要从这些资产中获得价值,也驱动自己在数字化社会中得到不断的发展。
随着企业业务外延从企业内部不断向外部、向企业所处的产业链和生态圈扩展,企业的数据视野也越来越宽,从主要关注企业内部数据,已经延伸到关注社会数据,包括交易的数据、人工合成的数据、机器的数据、社会网络的数据等在内的企业数据在不断被重新认识。
在进行这些海量数据管理时,企业面临很大的挑战。据IDC 2014年5月调查显示,72%的受访者认为当前数据的指数增长和复杂性是目前遇到最大的数据管理调整,38%的人希望通过一个单一的平台保护和管理自己所有的数据。
企业大数据管理构建要素及建设原则
面对这种挑战,用友iUAP认为企业为了让数据资产产生价值,必须要把收集到所有的数据真正管理好、利用好,大数据其实就是在多样的、大量的数据中快速获取信息的能力。现阶段用友认为企业大数据管理具备三大关键因素,企业市场要做好以下三个方面的事情,才有可能做好大数据的管理和应用。
第一,选择好自己的数据基础架构。企业数据基础架构变革的驱动力,最基本的驱动力来源于数据量的增长,以及数据类型的变化。此外,不同的企业需求不同,实时性、成本、数据增长的趋势可能也会影响数据基础架构的选择。如果企业面临是一个量级不大,结构化的数据,也许传统的关系数据库就可以解决;如果量级增大,10TB左右,可能原有的关系数据库不能满足,列式数据库是一个比较好的选择;当它的量级越发增大,类型越发增多的时候,需要考虑新型的NEW SQL、NO SQL,甚至有Hadoop这样的计算系统和数据存储系统。
第二,做好数据的管理工作,选择好数据管理的关键技术。企业的数据管理一般都会经历孤立系统、数据集、数据仓库和统一元数据的数据仓库等几个阶段。企业在数据建设过程中,初期很难从顶层把自己的整体元数据管理包括数据仓库规划做到位,更易于见效的方式是先做部门级应用或者是领域级的应用,后续逐步整合。
第三,数据应用建设,要把数据利用起来,才能真正产生价值。从分析应用来讲,分为四个部分:报表报告、交互分析、挖掘预测、决策自动化。其中交互分析涵盖的东西比较多,很多时候会把敏捷分析、自助分析、多维OLAP分析都放在这里面。总的来说,企业应该根据现今自身所处的阶段以及企业数据实际情况来规划后续的数据管理和分析应用的发展路线。
紧接着谢总分享了企业大数据分析建设原则。现阶段因为数据非常之大,所以难免会陷入为了收集数据和整理数据而做大数据建设的一种可能性。我们的原则:
第一,一定是业务目标驱动的。现在业务目标很好找,包括不同的领域,比方说提升财务收益或者优选供应链,比如说零售企业的定价和促销策略等等。
第二,自下而上的原则。在数据仓库上,建议采用以点带面的形式,没必要初始就做一个顶层的设计,可以先做一些领域级、部门级的应用,把数据建起来,多个数据集中以后可以快速见到效益。也就是现在逐渐迭代,螺旋式上升的一种发展路线。
第三,价值最大化的原则。现在数据分析技术很多,我们不应该只停留在简单的报表报告层面,至少应该做到把交互分析里面很多的技术应用起来。
第四,数据价值推向全员应用。全员应用比较好理解,现在决策非常快,单纯靠领导决策也不够,如果全员都可以收到数据的价值,可以在自己的范围内做快速决策,这也是互联网时代全员创新的概念。
基于以上分析与认识,用户数据平台产品具备以下关键特性。用友数据平台产品包括数据整合、分析加速、海量的数据处理,统计建模、挖掘和预测的支持等特性;用友BQ商业分析平台包括实时分析可视化、对大数据的支持、对移动分析的支持、对挖掘预测的支持、元数据的管理以及嵌入第三方系统的能力。
最后,谢东总结了用友大数据产品的客户价值。统一的数据平台可以提升企业管理能力,通过海量数据深度挖掘,可以深度洞察数据价值,并且通过技术性手段可以扩大企业数据边界,做到全面分析、智慧决策、实时分析、快人一步,通过移动分析可以扩大企业数据边界,做到全面分析、智慧决策、实时分析、快人一步,通过移动分析可以运筹千里之外。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20