广东具备加快发展 大数据产业的基础和条件
一、缺乏高质量的数据,直接影响大数据的价值实现
其一,对大数据的理解和重视程度远远不够。长期以来,我们的文化基因当中,数据文化很弱。没有把数据作为一种方法论,作为一种价值观,作为一种社会运转尺度来看待。
其二,丰富的数据源是大数据产业发展的前提。目前数字化的数据资源总量远远低于美欧,其中政府和制造业的数据资源积累远远落后于国外。就已有有限的数据资源来说,还存在标准化、准确性、完整性低,利用价值不高的情况,这大大降低了数据的价值。
其三,数据共享程度低。政府、企业和行业信息化系统建设往往缺少统一规划和科学论证,系统之间缺乏统一的标准,形成了众多“信息孤岛”,而且受行政垄断和商业利益所限,数据开放程度较低,以邻为壑、共享难,这给数据利用造成极大障碍。
其四,政府业务数据库公开的广度和深度都有限。各级政府已实行网上政务信息公开,不过,主要是行政事务性信息的公开;实时的政府业务数据库公开尽管已经取得进步,但是,政务业务数据库中的很多数据目前还没有实现公开,很多数据因为部门利益和“保密”等因素,仅限于部门内部人员使用;已经公开的数据仅限于一部分基本信息和统计信息,更多数据还没有被公开。
二、缺少稳定可靠的公有云基础设施平台,不足以支撑企业创新和大众创业
首先,自主研发能力限制了公有云平台的发展。美国以Amazon为代表的IaaS服务商构建了生机勃勃的公有云生态系统,不过,我们是以私有云的建设为主。因为公有云的建设一定要自主研发才能做到,必须具备核心的技术能力,没有现成产品可以使用,没有任何捷径可走,而私有云的建设可以采购美国公司的成熟产品。
其次,云计算的基础技术方面,美国是领导者,包括服务器虚拟化、网络技术、存储技术、分布式计算、OS、开发语言和平台等核心技术基本上都掌握在美国公司手中,我们的产品开发大多数是两个路径,一是在美国开源软件基础上修改使用,二是产品引入销售,包装后形成解决方案。近10年来,虽然有腾讯、华为、中兴等公司在大力投入研发资源,很多创业公司也在进行技术研发,但能够真正掌握核心技术的云计算公司还是太少,积累依然不足,很难形成主导性的产业链。
第三,公有云的安全问题导致众多大中型企业对公有云的使用存在安全疑虑,因为企业数据上传到公有云就一定程度上失去了对数据安全的控制力。
三、大数据的技术影响力仍然有限
大数据的市场发展前景是非常广阔的。自2013年以来,大数据每年的市场发展增长率都在百分之百以上。不过,目前大数据还没有形成普遍应用的局面。
大数据应用基本上还是发散状,并没有形成燎原之势,应用也主要集中于互联网营销场景。大数据现有技术水平的主要受益产业仍然是云计算和各类基于云计算的商业模式,在信息基础设施普及率、社会开放性以及与网络智能交互技术的结合度没有达到一定能级时,大数据的应用是有限的,达不到面向社会的“无所不能”。
四、支撑数据服务的大数据产业链有待完善
大数据价值的实现需要一条成熟的大数据产业链给予支撑。
广东已具备加快发展大数据产业的基础和条件,大数据产业链也正在加速形成。作为一个独立的产业来看,大数据的产业体系能够应对绝大多数的产业应用需求。不过,存在以下问题需要解决,一是,在建设重点上,企业侧重于物理上数据存储能力建设,纷纷推出了各自数据中心项目,通常以容量来衡量成就,而国外企业则主要侧重分析工具手段和围绕用户的解决方案开发。二是,在建设方式上,广东企业往往采取“各自为战”、“平地起楼”的建设方式,从基础层面分头进行大数据存储或处理的开发。国外企业却多采用收购兼并、合作开发多种方式来进行建设,推进大数据存储、处理、分析综合发展,而不偏于一隅。三是,大数据面临巨大的安全性挑战,企业、个人数据的隐私保护,需要相应的核心技术来保障。四是大数据面临着有效存储、快速读写、实时分析等挑战,将对芯片、存储产业的发展产生影响。
数据分析咨询请扫描二维码
数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21