大数据的隐私、失效、失误之痛
如果说在互联网时代我们的隐私受到了威胁,那么大数据时代下这种威胁已经更为深入。这就是大数据的不利影响之一。
从2012年开始,关于大数据所带来的负面问题就已经有过很多的讨论了,所以这次多少还是会有些老生常谈,请原谅。
今天的话题开始于上映两周全球票房即达到8亿美元的《速度与**7》,当然,不是说车、说美女,而是影片中那个无所不能的“天眼”,这个很酷炫的系统能够调 用地球上任何位置任何设备所生成的视频、图片、音频,让你想要搜索的人或事物无所遁形。大数据时代,“天眼”已经成为可能,同时,天眼也会在遭受病毒入侵 后出现决策上的失误。
无处不在的“天眼”
你的数据真的安全吗?这里的安全包含两层含义: 不丢失和看不到。我们可以使用AWS、阿里云、百度云盘等来存储自己的数据,也可以用多备份来备份自己的数据,但我们却无法保证你所产生的数据不被检测 到。计算能力的提升和数据存储成本的下降,激发了人们进一步采集、利用我们个人数据的野心。如果说在互联网时代我们的隐私受到了威胁,那么大数据时代下这 种威胁已经更为深入。这就是大数据的不利影响之一。
虽然Google、亚马逊、Netflix这种巨头公司宣称其对数据的保密性,但这也表 明了他们其实什么都知道。一个例子就是:在2006年10月份,Netflix做了一场题为“NetflixPruze”的算法竞赛,在《需求》这本书 中,作者曾经高度赞扬了这个竟在挖掘用户需求方面的经典做法,然而,虽然Netflix对数据进行了精心的匿名化处理,但是最终还是导致一个化名“无名 氏”的居住在美国中西部的未出柜的同性恋母亲的起诉。目前这种算法在各个电商平台被普遍应用,并且披着“推荐”“猜你喜欢”“看了又看”的外衣。
在大数据时代,我们的数据无所遁形,很多人已经感觉到自己的隐私受到了威胁,当大数据变得更为普遍的时候,情况将更加不堪设想。
数据失效
曹操有多少人马?诸葛亮说有80万,周瑜说只有3万。二者说的都对,也都不对。这就是数据的有效性。我们在做决策的时候,往往希望得到可量化的数据,但是却 无从保证数据的有效性。导致出现这个问题的原因大体可归纳为两种:一方面,人们会不自觉的将数据偏向自己喜好的方向,虽然只是下意识的,却最终导致了结果 的谬以千里;另一方面,数据运算是一个多步骤的协同作业,在我们进行相会推导演算的过程中,因果关系往往显得并不那么的明显或者不那么确定。
在由“小数据”时代向大数据时代转变的过程中,我们对信息的一些局限性必须给予高度的重视。数据的质量可能会很差,可能是不客观的,可能存在分析错误或者具有误导性,更为糟糕的是,数据可能根本达不到量化它的目的。
决策失误
正因为数据的失效,因此我们基于数据的决策也变得失效。大数据的不利影响并不是数据本身的缺陷,而是我们滥用大数据预测所导致的结果。所有的精准预测都是不 现实的。或者说大数据分析只能预测一个人未来很有可能进行的行为。比如说,通过输入海量的特定案件的变量,包括监禁的原因,首次犯罪的时间、年龄、性别等 个人数据,我们可以预测一个缓刑犯或者假释的人一旦提前释放会不会再次杀人。根据常识,我们知道这个概率绝不会达到100%,所以当基数足够大时,就一定 会出现失误。
这个例子中的主要问题并不是在社会需求面对更多的威胁上,而是我们在人们真正犯罪之前就对其进行了惩罚而否定了人的自由的权利。
另一方面,无数的例子告诉我们一个道理——卓越的才华并不依赖于数据。爱因斯坦说:天才就是1%的灵感加99%的汗水,但是这1%的灵感比99%的汗水更加重要。当记者问及苹果在推出iPad之前做了多少市场研究时,乔布斯那个著名的回答是这样的:没做!消费者没义务去了解自己想要什么。
大数据为我们的生活提供了便利,同时也让保护隐私的法律手段失去了应有的效力。面对大数据,保护隐私的核心技术已经不再适用,所以,我们必须杜绝对数据的过分依赖,以防我们重蹈伊卡洛斯的覆辙。这个可怜的人就是因为过分相信自己的飞行技术,在市局的预估上存在偏差最终导致了自己葬身大海。我们必须学会如何让数 据为我们所用,而不是成为数据的奴隶。这是另一个问题,后续有机会再和大家一起探讨。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21