大数据时代贵州走在最前端_数据分析
无论从对大数据的理解和认识角度来看,还是从大数据产业发展的速度来看,刘英杰认为贵州大数据已经走到全国的最前面,“云上贵州”大赛成为中国大数据产业第一赛,则从另一侧面充分地说明了他的判断很准确。中软国际非常看好贵州的大数据的未来,因此在去年,也就是贵州大数据元年,中软国际便参与创建了云上贵州大数据产业发展有限公司,作为国内最顶尖的软件与信息服务公司之一,他们不想错过与贵州共同发展的机会。
基础条件差 坚定贵州走大数据之路的决心
“作为大赛的评委,是我的第七次贵州之旅。”刘英杰说,几乎每次来贵州,都和大数据发展有关。在他的眼里,贵州早已不是那个落后封闭的地域,而是创新发展指引大数据新时代的领军者。
刘英杰认为在大数据时代来临之际,从全国的范围来看贵州醒得最早,贵州省委、省政府以及企业对大数据的认识和理解,是全国最领先的。
“如果没有最领先,我想马云也不会极其看好贵州大数据产业未来的发展,阿里云的主要发展基地没有选择杭州、上海、北京,而是建在贵州,就充分说明了这点。”刘英杰说。
贵州为什么会取得全国领先的优势,为什么贵州在这个全新的时代觉醒得最早?在刘英杰看来,这是历史倒逼的作用。经济落后,交通不甚便捷等等诸多限制贵州发展的历史因素,反向推着贵州的决策层要去思考贵州究竟走一条怎样的道路,才能摆脱贫穷落后的面貌。
大数据时代的来临,为贵州突破找到一条可行之路,大数据的利用和分析,已经摆脱传统行业对资源以及地域条件的苛刻要求,只要有网络覆盖的区域,就有发展大数据项目的可能,贵州省的决策者们敏锐地察觉到这稍纵即逝的契机,在全国率先迈出了第一步,两贵大数据产业发展示范集聚区的获批,更进一步的确立了贵州在大数据产业发展方面的全国优势。
发展大数据 贵州不能起步早跑得慢
“从觉醒的角度来说,贵州是不折不扣的第一,但是,按照贵州省长陈敏尔的要求,贵州不仅要起步早,还要跑得快,尽快把大赛项目落实,并发展壮大是贵州现在必须要做的事。”刘英杰坦言。
要想跑得快,政府的决心最为重要。因为在当前的中国,政府所拥有的数据数量最为庞大,也最有价值,怎么去更大化的开放数据,以供给企业、市民等等使用,通过数据产生新的商业模式,解决现有产业中的痛点,逐步转化为价值用以促进经济社会发展,是起得早中最关键的环节。
“我欣喜地看到,贵州省、贵阳市在这方面也做得很好,率先开放脱敏数据,贵州确实做得很棒。”刘英杰说。
另外,刘英杰认为贵州建立的大数据产业发展办公室,从组织和领导层面上解决了政策聚合,资金引入等等诸多环节的问题,起到了消除政策、部门壁垒的作用,非常有效的助推了贵州的发展。
“在贵州省大数据办的聚合下,依托阿里云飞天平台,中软国际参与投资并承建了云上贵州平台,在平台的基础上,贵州7+N朵云不断入驻,贵州大数据产业发展向更深入、更宽广的数据蓝海航行。”刘英杰说,中软国际十分看好贵州大数据的未来,并参与投资建立了云上贵州大数据产业发展有限公司。
大数据项目 价值决定未来的发展
“您最看重大数据项目中哪个层面?最能赚钱?最有想法?最具发展前景?”记者向刘英杰抛出问题。
“价值。”刘英杰没有任何犹豫的回答,在他看来“价值”,就是大数据项目如何来解决现有政府管理、社会、行业、企业的痛点所带来的价值。比方说,通过大数据分析运用提高政府管理效能,解决城市交通拥堵问题,打击网络假货等等所产生的价值。
“在大赛众多参赛项目,我比较欣赏的一个想法是药品冷冻链云,如果这事能做成,将对我们国家药品管理工作起到巨大的推动作用,是解决痛点的具体体现,会让老百姓用药变得更安全,更方便。当然固然想法很好,也不代表着能够成功,这个团队本身如何决定大数据项目的成败。”刘英杰说。
最后,刘英杰表示,其实有的时候,发展大数据产业,我们也不用过分纠结于项目本身是否在贵州落地,毕竟大数据时代的特征是跨地域、跨平台,就算公司建立在美国的西雅图,但是他们服务于贵州,也是大数据产业在贵州发展很好的另一种体现。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21