“大数据”如何促进高校学生管理工作思路转变
2012年4月10日,美国联邦教育部技术办公室发布《通过教育数据挖掘和学习分析改进教与学:问题简介》,指出:在教育中有两个特定的领域会用到大数据:教育数据挖掘和学习分析。在我国,教育界也对“大数据”的关注越来越多,尤其是对教育数据挖掘和学习分析这两个特定的领域。因此,大数据时代下学生工作的创新与发展已经呼之欲出。
在大数据时代,不是部分育人,而是全员育人
在大数据时代到来以前,随机抽样一直是我们最常使用的调查研究方式之一,然而,众所周知,随机抽样是在总体数据不可采集和分析的情况下才应运而生的,随着大数据时代的到来,这些都将成为可能,随机抽样的缺陷也将展露无疑。作为一名高校学生管理工作者,我们在实践中发现,用采样的数据分析方法违背了“为了一切学生”的工作理念。虽然随机采样大多数时候正确率非常高(可达97%),对于学校的整体情况来说,3%的错误率是可以接受的,但是对于每个学生来说,他们的具体信息和细节你无法掌握,甚至因为这3%的错误率还可能失去了对某类学生或者某个问题的研究能力,这对于学生管理工作来说将是一个巨大的隐患。因此,采用随机抽样的方法已经不能适应学生工作管理者“全员育人”的目标和要求,取而代之的是,以“样本=总体”的思维,面向高校所有学生,通过大容量的数据存储设备和先进的数据分析手段,收集并掌握每个学生全面和完整的数据,从而实现高校学生工作管理从“部分育人”到“全员育人”的转变。
在大数据时代,不是追求精确,而是追求效率
在小数据时代,因为收集到的数据有限,一旦出现一个细小的错误就会被放大,甚至影响整个数据的分析结果,所以我们要求收集数据的每一个环节尽量保证零失误率,同时确保记录下来的数据尽量精确。但是,如果我们掌握的数据多到接近总体,数据的精确性反而变得不那么重要了,因为大数据对错误的包容性可以帮助我们做更多新的事情,创造更好的结果,例如,观察到更多变化和细节。“大数据”建立之后,虽然每个学院操作起来可能会更加混乱,但众多的数据加起来不仅能抵消掉错误数据的影响,而且能够实时更新每个学院不断变化的各种信息,帮助我们掌握事情的发展趋势,从而得出一个更加准确的结果,同时提供更多的额外价值。因此,从这一角度来看,大数据的混杂性反而提高了我们工作的效率。在分析问题时,我们不再需要担心某个分析点对整个调查结果的不利影响;在寻找解决方法时,我们也不再需要以高昂的代价消除所有的不确定性去寻找唯一的答案。这不仅使我们能够更加辩证、客观地看待每一个学生,也使我们在接受这些纷繁数据的不精确和不完美的同时,接受了每个学生的个性化和复杂化。
在大数据时代,不是注重因果关系,而是注重相关关系
在小数据世界中,因果关系是核心竞争力,但是在大数据时代,相关关系将发挥更大的价值。通过识别有用的关联物,相关关系虽然不能帮助我们揭示这个人或这个状态背后的原因以及发生这个现象的内部运作机制,但是可以帮助我们了解一个人的状态或现象,还可以通过寻找关联物预测未来。一个学生如果出现问题,不会是瞬间的,而是慢慢地出问题的。通过收集所有的数据,我们可以预先捕捉到学生要出现问题的信号,例如学学习成绩的下降、参与活动的次数减少等等,这些都说明他可能要出问题了。作为高校学生工作管理者,就可以利用“大数据”把这些异常情况和正常情况进行对比,然后知道什么地方出了什么问题。通过尽早地发现异常,管理者就可以在问题出现之前采取措施进行疏导和调解。因此,在大数据时代,相关关系将大放异彩,不仅仅是因为它能为我们提供因果关系所不能提供的视角,而且是因为这些视角都很清晰,有很高的分析价值,从而有助于我们拓宽研究思路并积极应用于实践。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21