商业分析服务加速行业布局 与大数据结合紧密
传统的华尔街选股者试图关注影响其投资的一些关键因素,诸如债券收益率、日元汇率,又或是石油价格和月度消费支出数据。
但一些新型的对冲基金公司认为,通过收集全球尽可能多的数据——从沃尔玛停车场占位情况的卫星图像到炼油厂释放出的热量信号,并且快速的投注以利用隐藏在这些数据集之间的关系,他们能够打败这些传统基金经理。
该方法体现了近来的一种投资转变,更多的依靠大数据和算法在竞争对手间赢得比较优势。首尔一家名为Jumpgate科技的公司宣称,他们正试图消除人为参与,放手让机器学习技术自由探索和利用世界日益增长的数据宝库。
那么对冲基金的人类创始人又将是何种角色呢?设计一个好的系统,让它可以利用大量的数据点,并收集更多的数据流供给该项目。Jumpgate,诚然规模不大,却已跻身于所谓的金融科技公司行列,他们试图将硅谷的科技创新融合进深谙金融市场的华尔街。
Jumpgate公司的董事长兼首席执行官Kristof Olesch自述其自13岁起就开始编程,16岁便开始在证券市场投资。目前该公司已经招募了一些工程类的博士毕业生。
一家更具规模的公司,总部设在纽约的二西格玛投资有限责任公司(TwoSigma Investments LLC),荣获本周《华尔街日报》头版的主角,编译了一款程序,让机器获取收益报告、天气预告和Twitter上的海量信息。
为了分配其价值240亿美元的管理资产,two sigma公司的策略是在进行一项交易前,基于这些数据产生不同的投资模型,然后用一种算法让模型之间彼此对抗,最终择优选取出最佳投资策略。
这些投资者们说,这是第一次,全球的计算机能够存储和学习从世界各地收集到的信息,这些信息来源涵盖超级计算机、智能手机,以及嵌入日常家居用品的小型处理器。
大部分的数据点可能帮不上股票投资者什么忙。有时,一个神秘的数据点只是一个神秘的数据点而已。
但是Olesch先生确信它远不止表面看来那么简单。传统的投资者只能籍由与公司管理层的会议、细致阅读财务报表和渠道检查来获得信息。而他则希望通过利用电脑的力量,能获得大规模的信息化优势。
Olesch先生指出:“柯达的终结是由于技术革新,而现在资产管理者的工作方式也面临同样的境况。” 他现在已有大约3000个数据流,他希望很快能够增加到约10000个数据流。
举个例子:商店停车场的商业卫星图像不但可以提供诸如商场交通等信息,也可以透露包括驾驶习惯、天气类型及其它众多人类基金经理无法预测的指标。
同样的,观察一个炼油厂的热信号能够推导出该厂设备是否满负荷运转。
“现在人们仅仅处理使用了全球1%的数据,” Olesch先生说道:“我们希望得到这些数据,而不是等着别人告诉我们数据处理已饱和。”
正因如此,现在很多公司专注于Olesch先生所说的“技术侦察”——想方设法接入各种数据流,无论来自开放数据还是通过与那些可能坐拥大量潜在价值数据的公司或机构合作而获得的数据。
到目前为止,Jumpgate这家在首尔成立,却在新加坡注册的公司,认为该战略行之有效。尽管和Two Sigma这样的大公司相比,它的基金规模还很小,但是Olesch先生表示其基金在头三个月中均业绩良好,即使在其基准——标普500指数都不景气的情况下,它仍保持每个月都是正收益。
根据IDC最新发布的《中国商业分析服务市场2015-2019年预测与分析》,商业分析服务市场将持续稳定增长,并在多个行业中均有进一步深入的应用,其与大数据技术的结合也备受企业关注。而在不同行业中,市场对与商业分析相关的定制化服务的需求依然强烈。
IDC数据显示,中国商业分析服务2014年的市场空间达到13.98亿美元,较2013年增长了16.4%。IDC预计中国商业分析服务市场将在未来5年实现16.7%的复合增长率,到2019年市场规模有望达到30.27亿美元。
IDC中国企业级研究部高级分析师聂楠指出,随着企业管理要求的不断提高及行业内的激烈竞争,企业对商业分析的价值越来越认可,商业分析也从最初的信息查询与展现功能,更多的向精准营销、风险管控、集团决策分析等更加智慧的方向发展。而随着对非结构化数据的挖掘及处理能力的提高,商业分析与大数据的结合也进一步深入行业应用。目前中国商业分析服务市场呈现出如下特征及发展趋势:
智慧城市建设和产业转型促进商业分析在重点行业中的蓬勃发展。金融和电信行业作为商业分析应用的领军者,除了在数据仓库、决策分析、查询统计、客户分析等方面的需求外,对大数据技术以及数据治理等领域更为关注。而在政府决策、制造、交通、医疗、零售、电子商务等领域,商业分析已经有特定应用,在智慧城市建设及产业转型升级需求的推动下,这些领域未来还将蓬勃发展。同时,商业分析服务提供商也在加速行业布局,抢占以上新兴领域的市场份额。
商业分析与大数据的结合越来越紧密。大数据时代的到来,扩大了“数据”概念的外延。大数据技术帮助用户从海量的更加复杂的数据中挖掘信息。商业分析作为结构化数据时代蓬勃发展的产物,在未来与大数据技术的结合将越来越紧密。而随着云计算技术的兴起,与数据分析相关的云服务也初现雏形。可以预见,未来与大数据和云计算的结合将进一步促进商业分析服务市场的发展。
中国商业分析服务市场已经形成初步的竞争格局。 与全球市场相比,中国商业分析服务市场的发展尚处初期,未来市场潜力巨大。目前,中国商业分析服务市场也已经形成了初步的竞争格局,竞争者可以大致归纳为三大类:咨询服务提供商,外包服务提供商及行业解决方案提供商。咨询服务提供商多为跨国企业,具备较完备的跨领域咨询能力;外包服务提供商有着强大的服务资源团队及开发实施经验;行业解决方案提供商在特定行业的积累较深。未来,在国家“自主可控”的IT建设原则下,跨国企业将与国内的服务提供商有更多合作,尤其在政府相关领域。
未来几年,随着行业应用的进一步深入,商业分析服务市场在行业格局上会有持续变化。中国也会涌现出更多专注在商业分析领域的解决方案提供商及服务商。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28