大数据战略能不能打造第二个百度_数据分析师
4月24,以“大数据引擎驱动未来”为主题的百度第四届技术开放日在北京举行。百度CEO李彦宏表示:“技术创新是一个从量变到质变的过程。并行计算能力不断提升和云存储等技术产品成本的不断降低,使大数据真正走到了技术变革的临界点。百度开放自己的大数据核心能力,将更好地帮助传统行业挖掘数据价值,加快传统行业转型升级,进而发挥出对整体社会经济的革命性影响。”
显然,大数据蕴涵着巨大的社会价值和商业价值,已经成为一项重要的生产要素。而互联网带来的巨变让更多传统企业一时间无所适从,以技术为核心的大数据又开启新一轮的风暴。
当下,越来越多机构、企业都迫切希望从不同渠道获取的、多种类型、结构复杂的大数据中挖掘出有价值的趋势洞察,以实现快速、准确地制定决策,驱动商业和管理创新。然而,大部分机构和传统企业都普遍面临着大数据应用困境,不仅数据孤岛严重,数据存储与管理的规模、数据分析挖掘以及智能化能力也都存在着难以突破的瓶颈,处在从数据累积的量变过程转化为“数据智能”质变过程的临界点上。
或许,百度大数据将是传统企业向拥抱互联网飞跃的一座桥梁,抑或纽带。作为天然的大数据企业,百度拥有完整、领先的大数据技术,通过对全网大数据进行处理,百度成功推出百度指数、百度商情、百度司南等一系列大数据商业化应用,以及“百度迁徙”、“景点舒适度预测”、“城市旅游预测”等大数据社会化产品,便于公众和企业使用百度开放的大数据资源。下一步,百度选择了将自身处理大数据的技术能力对外开放。
李彦宏表示,目前大家可以看到的是互联网行业正在改变传统行业、改变每个人的生活,而技术也正在改变着互联网。当技术的发展累积到一定的程度以后,就会从量变向质变过渡。
可以看出,在互联网改变传统行业的同时,技术的积累也在潜移默化的牵动着互联网的神经,在技术积累到一定程度,必然会引起质变,大数据引领未来的路径。
科学技术是第一生产力,技术沉淀必将引领未来。目前,百度的技术积累确实已经实力雄厚,大数据引擎完成了开放云,数据工厂,百度大脑的“三剑合璧”,在帮助更多的传统产业插上大数据的翅膀的同时,也帮助企业、组织、政府更好地决策。
百度的做法是把开放云、数据工厂、百度大脑组成“大数据引擎”,把大数据存储、分析和智能化处理等一整套核心能力通过平台化、接口化的方式对外开放。
例如,上传海量孩子的哭声,根据小孩的哭声数据库来预测可能的症状;通过用户的脉搏、血压、心电等数据积累,依据海量数据判断或预警用户可能产生的病情等。
从这个意义上来说,技术创新带来的种种变革,随时有可能会从量变转向质变,深度颠覆我们生活的世界。百度深信“技术改变世界”,而大数据引擎对经济社会的深刻颠覆,无疑是对此最好的诠释。百度大数据引擎将进一步利用互联网强大的数据库和数据处理能力,立足于提升传统产业效率和降低他们的成本,为传统行业转型升级做好技术铺垫。
事实上,以技术为核心的百度一直在寄望用互联网方式改造传统行业。此前,CEO李彦宏曾公开表示,互联网应更加积极地向传统行业进军。其中,他重点看好的五个行业包括电商、旅游、出版、教育和医疗。前不久,李彦宏在Q4财报分析师会议上透露,百度2014年仍将进行大张旗鼓的投资。
放眼未来,将是一个大数据为核心的世界,就像互联网的快车时代。李彦宏表示:“互联网在改变中国,这可以说是过去时,甚至是现在进行时,可是我们怎么样能够为未来时做准备呢?我觉得这就需要我们对技术,对大数据,或者以大数据为基础的互联网相关技术,有一个及早的了解、及早的认知、及早的拥抱”。
不难看出,百度已经走在时代前沿,大数据更是占尽先机,目前技术的积累已经走在量变到质变的临界。李彦宏以 “百度大脑”举例,“这个项目实际上用很多计算机加上人工智能,再加上深度学习技术去模拟人脑的思维。现在大约相当于两到三岁孩子的智力水平。这可能是世界上最复杂的可以模拟人脑思维的系统。但是当你想象,摩尔定律继续做十年二十年的话,百度大脑很有可能比人脑还要聪明,那时候质变就会发生。”
正如李彦宏所说:“技术积累到一定地步的时候,会发生量变到质变。量变过程中不会觉得很重要,但当发生质变的时候就有可能被打得措手不及。而人类的思维通常习惯于去想量变的事情,而忽视质变、即将到来的质变。”
当前,大数据正处在一个量变到质变的临界点,可以肯定的是,百度凭借技术的沉淀,加上搜索领域的多年积累,已抢占大数据的先机,这样看来,BAT的位置是对的,百度一直是主角,用技术引领未来,以大数据为核心再造一个百度也不是没有可能。
李彦宏在大会致辞中还表示,互联网正在加速淘汰传统行业,同时,很多人的思维方式也正在发生着改变,各种行业也在发生着改变。首先被互联网颠覆的行业就是传统的媒体行业,随后是零售、金融等。随着更多行业被互联网所颠覆,越来越多的人已经感觉到互联网真的来了。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21