
要是刘姥姥来到21世纪,把每一座大都市都逛上几圈,她一定会觉得都市人最喜欢的娱乐就是排队。早在1946年,匈牙利裔的作家乔治·米克斯(George Mikes)定居伦敦时,就在著作《如何当一个外星人 》(How To Be An Alien)中写下了一段经典名言:“到周末,英国人在公车站前排队到里士满公园(Richmond Park)玩。他们排队等游船,排队等喝茶,排队等吃冰淇淋。然后纯粹出于兴趣,再去排一些更奇怪的队伍。最后回到公车站前排队,花上他一辈子的时间……许多英国家庭喜欢晚上在家里排上好几个小时的队伍。当小孩子不玩了,准备排队去睡觉时,是父母们最难过的时刻了。”
这是旁观者兴灾乐祸的心态。对于身陷在队伍之中的人,或者商家来说,看到这么多等得不耐烦、随时要离开的客人,总归是一件不好的事。各位有没有想过,如果不考虑先来先到的公平性原则,想减少所有客人等候时间总和的话,该先服务哪些客人吗?答案是,先服务很快就可以搞定的客人。
举例来说,大毛、二毛、小明三兄弟在柜台前排队,大毛买了全家的生活用品,得花100秒结帐;二毛拿了一堆零食,需要花50秒结帐;而小明只拿一罐奶茶,10秒就结完帐了。如果按照年龄从大到小的顺序结帐,大毛、二毛、小明各自会花上100秒、150秒、160秒的时间才能完成结帐,平均时间为136.7秒。但如果颠倒过来让结帐快的人先结帐,则小明、二毛、大毛仅需要10秒、60秒、160秒可以完成结帐,平均是76.7秒,缩短了60秒。
用符号表式可以看得更清楚,当三人结帐时间各自为t1、t2、t3,并按照这样的顺序结帐时,每个人各自完成结帐的时间是t1、t1+ t2、t1+ t2+ t3,平均为t1+ 2t2/3+ t3/3。随着队伍的顺序,越后面的人对结帐时间影响越小,以N个人来说,第n位客人的排队时间是tn,平均时间即为:
因此,店家可以先处理那些不大需要花时间的客人,这样可以降低每人平均等待时间,提升顾客满意度;同样的道理,店家也可以反过来,先处理大客户的单,营造出门庭若市的热闹形象。所以如果你看到某间盐酥鸡摊位前排队的人特别多,说不定不一定是很好吃,只是老板数学很好,刻意延后那些只买豆干或甜不辣的点单。
然而,因为现实情况中需要考虑的地方太多,数学理论有时很难直接套用。在排队这个问题上,就算可以依照结帐时间排队,商家也不愿意真的这么做。因为要是真按照这个标准,等于变相鼓励大家买少一点,才能快点结帐。买了10万元的大客户永远得被排在最后面,等到铁卷门拉下来了才能结他的帐。
但这则理论并没有失效,商人们依然成功地将它转化为了一件我们都知道的东西——快速结帐柜台。借由快速结帐柜台设定的结帐门槛,将原本结帐时间短到长的排序,用二分法取代,低于门槛的人优先处理。如此一来,就能够大幅缩减整体的排队时间。
★让我们再来看看同样是等待,麦当劳和wendy汉堡店又有什么不同的排队方式:
排队是件烦人的事情,却又无法避免。不同地方排队方式不总是一样。很多地方采用的是“蛇形排队法”,在几个柜台同时工作的时候,所有的顾客只排一队,队伍像一条长长的蛇一样在间隔的栅栏之间穿行,排在队伍最前面的顾客就可以得到服务。而有的地方采用的则是传统的,每个柜台后面各自排一队的方式。美国卖汉堡的两家快餐店——Wendy汉堡和麦当劳,就分别使用了蛇形排队法和多列排队法。如果要较个真的话,这两种排队方法孰优孰劣呢?麦当劳和Wendy汉堡假设餐厅里有两个柜台可以提供服务,在几十秒之内 10 位顾客先后到达,排起了队,麦当劳和 Wendy 汉堡店里的队伍分别会是这样:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10