京公网安备 11010802034615号
经营许可证编号:京B2-20210330
要是刘姥姥来到21世纪,把每一座大都市都逛上几圈,她一定会觉得都市人最喜欢的娱乐就是排队。早在1946年,匈牙利裔的作家乔治·米克斯(George Mikes)定居伦敦时,就在著作《如何当一个外星人 》(How To Be An Alien)中写下了一段经典名言:“到周末,英国人在公车站前排队到里士满公园(Richmond Park)玩。他们排队等游船,排队等喝茶,排队等吃冰淇淋。然后纯粹出于兴趣,再去排一些更奇怪的队伍。最后回到公车站前排队,花上他一辈子的时间……许多英国家庭喜欢晚上在家里排上好几个小时的队伍。当小孩子不玩了,准备排队去睡觉时,是父母们最难过的时刻了。”
这是旁观者兴灾乐祸的心态。对于身陷在队伍之中的人,或者商家来说,看到这么多等得不耐烦、随时要离开的客人,总归是一件不好的事。各位有没有想过,如果不考虑先来先到的公平性原则,想减少所有客人等候时间总和的话,该先服务哪些客人吗?答案是,先服务很快就可以搞定的客人。
举例来说,大毛、二毛、小明三兄弟在柜台前排队,大毛买了全家的生活用品,得花100秒结帐;二毛拿了一堆零食,需要花50秒结帐;而小明只拿一罐奶茶,10秒就结完帐了。如果按照年龄从大到小的顺序结帐,大毛、二毛、小明各自会花上100秒、150秒、160秒的时间才能完成结帐,平均时间为136.7秒。但如果颠倒过来让结帐快的人先结帐,则小明、二毛、大毛仅需要10秒、60秒、160秒可以完成结帐,平均是76.7秒,缩短了60秒。
用符号表式可以看得更清楚,当三人结帐时间各自为t1、t2、t3,并按照这样的顺序结帐时,每个人各自完成结帐的时间是t1、t1+ t2、t1+ t2+ t3,平均为t1+ 2t2/3+ t3/3。随着队伍的顺序,越后面的人对结帐时间影响越小,以N个人来说,第n位客人的排队时间是tn,平均时间即为:
因此,店家可以先处理那些不大需要花时间的客人,这样可以降低每人平均等待时间,提升顾客满意度;同样的道理,店家也可以反过来,先处理大客户的单,营造出门庭若市的热闹形象。所以如果你看到某间盐酥鸡摊位前排队的人特别多,说不定不一定是很好吃,只是老板数学很好,刻意延后那些只买豆干或甜不辣的点单。
然而,因为现实情况中需要考虑的地方太多,数学理论有时很难直接套用。在排队这个问题上,就算可以依照结帐时间排队,商家也不愿意真的这么做。因为要是真按照这个标准,等于变相鼓励大家买少一点,才能快点结帐。买了10万元的大客户永远得被排在最后面,等到铁卷门拉下来了才能结他的帐。
但这则理论并没有失效,商人们依然成功地将它转化为了一件我们都知道的东西——快速结帐柜台。借由快速结帐柜台设定的结帐门槛,将原本结帐时间短到长的排序,用二分法取代,低于门槛的人优先处理。如此一来,就能够大幅缩减整体的排队时间。
★让我们再来看看同样是等待,麦当劳和wendy汉堡店又有什么不同的排队方式:
排队是件烦人的事情,却又无法避免。不同地方排队方式不总是一样。很多地方采用的是“蛇形排队法”,在几个柜台同时工作的时候,所有的顾客只排一队,队伍像一条长长的蛇一样在间隔的栅栏之间穿行,排在队伍最前面的顾客就可以得到服务。而有的地方采用的则是传统的,每个柜台后面各自排一队的方式。美国卖汉堡的两家快餐店——Wendy汉堡和麦当劳,就分别使用了蛇形排队法和多列排队法。如果要较个真的话,这两种排队方法孰优孰劣呢?麦当劳和Wendy汉堡假设餐厅里有两个柜台可以提供服务,在几十秒之内 10 位顾客先后到达,排起了队,麦当劳和 Wendy 汉堡店里的队伍分别会是这样:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04