英特尔关注大数据前沿趋势 促部署落地
如今,在IT圈,你不谈大数据都不好意思说你是做IT的。如今,各大厂商也加大力度在大数据领域拓荒,试图抢占这个未来战略制高点。作为全球知名的IT企业,英特尔在大数据领域深耕已久,大数据与软件关系密切,今天我们就来看一看英特尔在大数据与软件方面的进展情况。
此次我们采访了英特尔公司软件与服务事业部副总裁兼系统技术和优化部门总经理Michael Greene先生;英特尔公司软件与服务事业部、大数据技术全球总经理马子雅女士;英特尔中国研究院院长吴甘沙先生;英特尔亚太研发有限公司物联网解决方案与产品事业部商务开发经理顾典经理,由他们为我们详细介绍了英特尔的情况。
英特尔公司软件与服务事业部副总裁兼系统技术和优化部门总经理Michael Greene
大数据领域 英特尔各司其职
MichaelGreene目前主要负责英特尔内部开源问题,在大数据上面,英特尔一直提供开放代码的大数据和分析平台。目前在STO里面有一个专门针对大数据领域的团队,马子雅女士是这个团队总经理,这个团队有三个主要功能,第一是领导英特尔在开源社区方面的贡献;第二就是通过和业界合作,完善在IA架构上的用户体验;第三,就是基于IA上面对大数据进行优化。这是Michael Greene所领导的团队的最大特点。
英特尔中国研究院院长吴甘沙先生
吴甘沙先生是英特尔中国研究院的院长,目前在大数据这块,主要的任务在SSG方面,这个方面有点向侦察兵的职责,负责在前面谈论,也就是负责大数据方面发展的前沿的一些研发。比如,如今SSG正在努力的研究Hadoop相关东西,比如流处理、图计算、内存计算,这是SSG的第一阶段,接下来还会研究大数据和人的关系,以及大数据跟中小企业以及传统公司的关系等等。
英特尔亚太研发有限公司物联网解决方案与产品事业部商务开发经理顾典经理
物联网行业如今快速发展,也已经成为大数据行业非常重要的一个领域,顾典领导的物联网事业部是英特尔内部的一个部门。如今随着互联网设备的快速增加,这些互联的设备本身每天都会实时的不间断的产生很多数据,从英特尔推广物联网普及的角度来说,顾典不仅仅是关注这些设备的互联,还关注设备互联以后怎么样被高效管理。
第2页:英特尔关注大数据前沿趋势
关注大数据前沿趋势 促行业部署落地
目前,人们无疑关注的是大数据的发展趋势,哪一个行业领域会是英特尔接下来的研发方向呢?Michael Greene表示,深度学习将会作为大数据接下来的一个研究方向。另外,英特尔主要关注在软件上、问题的处理,包括大容量的复杂计算,这上面英特尔可能还会加入一定的精力做进一步的开发,并且现在英特尔已经有一些成功案例。
英特尔公司软件与服务事业部、大数据技术全球总经理马子雅女士
作为英特尔中国研究院的院长,吴甘沙也认为深度学习是发展方向,并且深度学习是大数据分析当中比较偏向高性能计算的一种,比如在Spark上做了很多的各种各样的大数据分析。事实上深度学习现在有很多种方式来对它进行加速,可以用GPU、可以用Xeon Phi,也可以用FPGA这样的平台进行加速。从英特尔研究角度来说,英特尔希望各种选择都能够尝试一下。
无论何时,大数据分析的落地部署一直是用户关注的话题,Michael Greene认为目前需要帮助用户更加快速轻松的部署,Cloudera现在有一个组件——ClouderaDirector,可以帮助客户快速的自动化地部署。另外在开源社区Open Source里面,英特尔一直在做一个项目Sahara,在这个项目不管你是Hortonworks、Cloudera甚至MapR都可以帮助容易的帮助用户实现落地。
英特尔各个部门在大数据这块有明确的分工。Michael Greene比较专注于具体用户的问题,因为只有把用户的问题放在最高点,所有的解决方案才会整合到一块儿。一旦英特尔把问题搞清楚了之后,第二个重心是要在英特尔平台上做最大的优化,尤其是很多时候用户的问题,从端到端,中间的每个组件都要做一些英特尔平台的优化。比如像SSD、新的存储技术这些都可以做到英特尔平台上的优化。
在物联网用与大数据方面,顾典表示,通过和企业用户、行业用户的一些探讨,包括第三方的咨询,英特尔看到物联网的发展还是碰到了一些技术上的瓶颈。如果说以互联设备的增长量来说,从目前的150亿台设备增加到将来的500亿台设备。怎么样把这些设备实现互联,然后在规模部署上突破碎片化一些瓶颈,这是物联网事业部目前关注的地方。
尽管从谈话中我们了解到大数据分析目前还有很长一段路要走,但是我们也能够从几个被访者谈话中了解到大数据的魅力所在,以及英特尔在大数据分析方面所做的努力。对于大数据,英特尔一直走在发展对饿前列,当大多数人在考虑第N个阶段的时候,开始考虑N+1个阶段。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31