客观利用"大数据" 不要变成"大错误"_数据分析师
大数据时代已经来临,但大数据并非无所不能。其核心不在规模大,它蕴含的是计算和思维方式的转变,过于乐观和简单的理解,都可能助长“大数据迷信”
得益于移动互联网以及智能手机、智能穿戴产品的发展,人们的行为、位置甚至身体的生理特征等数据都可以便捷地被记录,使得大数据的采集成为可能。
这一新的数据形态产生的价值,比如神奇的趋势预测能力被公众广泛讨论,成为不少商家宣传营销的卖点。从汽车、化妆品到体育,似乎所有行业都可以借助大数据,精确定位、找到消费者,预测趋势、赢得未来。
在支持者看来,大数据的能耐在于每一个数据点都可以被捕捉到。分析大数据就能推导出惊人准确的结果,经典的抽样统计方法面临淘汰。同时,数据已经大到能够自己说话,“数据背后的原因不再重要,人们只需要知道数据之间有统计相关性就行”,理论可能就此终结。
毋庸置疑,规模更大、更新更快的大数据拥有深刻的洞察力,也将带来价值,但认为有了大数据就无所不能,却过于乐观和简单。
首先,几百年的统计学发展史已经告诉我们,通过统计数据来认知现实世界从来都不能尽善尽美,现实中存在的样本误差和偏差等种种“陷阱”,不是单单依靠更大、更新、更快的数据就可以解决。
其次,大数据价值密度低、内容混杂,找到“货真价实”的信息已属不易。而“知其然,不求知其所以然”,只考虑纯粹相关性,不注重数据与结论之间因果关系的分析方法,在现实中往往经不起推敲。比如,理论上可以通过分析上的每一次发言,推断出某一事件引发的公共情绪,但不可忽视的是,微博活跃用户只能代表他们自己,并不代表更广泛的群体。
尤其不能忽视的是,目前许多数据仍处于“孤岛”状态,单一或少数领域的大数据不仅价值有限,还存在片面性的危险。只有数据跨越了行业领域间的界限,关联性加强时,数据的准确性才会提高。打通数据“孤岛”,融合数据还要走很长的路。另外,数据的收集、存储和搬运虽然越来越便利,但从技术上看,如何从海量数据中淘出有价值的信息,还缺少强大的工具。
毫无疑问,大数据时代已经来临,但大数据并非无所不能。大数据的核心不在规模大,它蕴含的是计算和思维方式的转变,过于乐观和简单的理解,都可能助长“大数据迷信”。比较切实的态度或许是,在尊重传统的统计经验基础上,在不矮化大数据是“旧瓶装新酒”的同时,不迷信大数据,善用大数据。否则,带着“数据自己可以说出结论”的谬识,就可能掉进了数据的“陷阱”,从而使大数据产生“大错误”。
数据分析咨询请扫描二维码
数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21