大数据为何会冲击传统媒体服务模式_数据分析师
大家都知道大数据对于媒体的杀伤力是巨大的,这其中包含传统媒体(例如报纸、电视)也包含网络媒体(例如新闻门户)。可是大数据为何能够冲击传统媒体呢?
用学术的口吻,可以这样描述:“媒体渠道碎片化,带来对指标的要求;大数据模式清晰的结果导向带来对广告客户的巨大吸引力。”
通俗地说,就是:做媒体的人多了于是客户就要去判断哪一家的效果最好。也就是说做媒体的人越来越多,客户看着越来越晕,最后忍不住了要问“你们究竟谁家的效果好?有什么样的评估标准?”随着数据经营理念的提升,大家发现可以用精准的数据数量来评估效果,而不是几年前那种关注度数据。 假如你是卖车的,第一家 媒体跟你说有1万个人从他的网站看过你的车,第二家媒体说他为你提供10个购买意向客户,两个数据都是真的,你选谁?
最早一批想要用效果去评估广告费的人,他们告诉客户“我以后不再收广告费,我按照大家的成交去结算”,结果他们都死了。然后大家发现,可以通过明确的机会去向客户收钱,于是发明了现在的所谓大数据。然而这种能够看似轻描淡写向我们走来的新模式,在我们对他有了深刻了解,在我们学会了它的使用方法之后,我们发现:大数据简洁的运营方式带来运营技术的革命!
1、大数据模式是不依赖编辑能力的内容革命
关于媒体的内容,过去一直有句话:内容为王。因此按照过去那个媒体套路,所谓媒体的任务就是:做内容,做内容,做内容。
如果深入分析做内容的根本目的,无非两个:服务用户、服务客户。从这两点出发就很容易理解大数据的作用了!
首先来看大数据对于“服务用户”环节的改变。我们来看“离经叛道”的例子——今日头条,今日头条通过用户访问习惯分析,向用户推荐TA所喜好的内容,从而避免了堆砌内容带来的信息过剩。多家传统媒体的人慕名去看今日头条经验,今日头条的人带他们去看机房,而不是去看编辑,说今日头条做内容用的是机器而不是人。于是老媒体人摇头,说这是瞎搞。于是今日头条估值一出来满世界的媒体开始围攻今日头条。可是,资深媒体经营人员私下悄悄说,代理今日头条很赚钱,流量也很大。不服输的媒体人仍旧在努力,他们雇佣了更高素质的编辑去人工筛选信息。这样新的问题产生了——你如何保证人的素质?如何保证内容判断的客观性?如何保证编辑的眼光与用户一致?今日头条给出的答案不会是终极答案,但是这是趋势!
再来看“服务客户”的环节。大数据之前的媒体服务,从根本上说非常像红白喜事的吹鼓手,吹吹打打做样子。这样固然可以吸引关注,可是难以吸引精准客户,更不用谈改善成交结果。大数据让呼叫中心焕发青春,让客服而不是编辑的作用凸显。对客户而言,他更喜欢一个牛皮哄哄的记者,还是带着他的客户(媒体的精准意向用户)而来的服务人员呢?对媒体经营者而言,培养一位懂策划的记者编辑难还是按照标准为客户服务的客服难呢?答案自选。
就算你不再说,内容为王的定理仍然存在,所改变的只有一点:过去的内容为王其实是“做内容的人为王”,大数据让媒体回归本源——内容为王。
2、大数据模式是不依赖销售精英的销售革命
媒体经营最难的环节是什么?——是销售!
第一代媒体销售是伴随着媒体的光环、影响力和纯广告模式而来的。他们的销售方式本质上是关系销售。
第二代媒体销售(尤其是大行业垂直网站的专业销售人员)是伴随着媒体竞争而来的,他们除了关系销售,开始在商业规则、营销策划上努力,这也带来了第二代媒体销售存在着培养难度大的巨大瓶颈。
大数据让销售回归产品销售水平,卖大数据服务跟卖团购服务差不多,简单直接。因为跟客户说任何好处也不如跟客户说你有多少精准客户资源、能保证他的销售达到什么结果。
所以,大数据让媒体运营摆脱了销售员依赖症,使媒体服务的规模不受销售团队的限制。
3、大数据模式是可预测盈利周期的经营革命
曾经有一条亘古不变的规则横在媒体经营者面前——广告滞后性原理。我们作为专业的互联网媒体盈利模式服务机构,在过去的5年里一直极其痛恨该原理,直到2014年大数据模式变得清晰。
所谓广告滞后性就是媒体服务好起来的时候,收钱会晚一些;当媒体服务质量下降的时候,收入下滑也有一个过程。这就让新办媒体、媒体新开的频道一直存在盈亏平衡周期的问题。一旦我们开出一个频道,就不得不面对着多久可以开始盈利的烦恼,运营频道的团队每天也都在问自己模式是否靠谱之类的问题。可是大数据让效果可以测算与预估,让客户可以直接计算获取销售机会的精确成本,于是预充值、精确计算效果等方式让媒体的运营者可以摆脱广告滞后性的束缚。
作为媒体大数据运营的鼓吹者,我每天都面临一个具体问题,就是:如何起步?——我的答案是:不是你没数据,而是你没有用数据! 所谓大数据其实是一种思维方式,大数据绝不是如何搜集分析数据,而是系统的数据搜集、挖掘、使用、分析过程。大数据的关键不是如何搜集与分析,而是你如何使用!
最后补充一点:大数据与媒体服务并不矛盾,反而有促进作用。经营就像用兵,讲究虚虚实实,在媒体的昨天我们难以让任何一个重视效果估算的客户清晰地认知服务效果,而大数据让我们可以至少让一部分客户对结果满意。这只会提升媒体服务的价值,绝不会贬低媒体服务的价值。依靠影响力混饭吃的黄金时代,正在快速从我们指缝中溜走,抓也抓不住!
数据分析咨询请扫描二维码
在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28