孙丕恕:整合信用大数据 打牢经济“基础桩”
“全面、准确的信用数据是建设社会信用体系的基本要素。中国经济的突飞猛进和互联网的发展催生了海量的信用数据,传统的技术手段无法满足庞大复杂的数据整合要求,需要使用大数据技术进行收集和分析,形成更加客观的信用评价体系。”第十二届全国人大代表、浪潮集团董事长兼CEO孙丕恕提出要基于大数据技术,整合政府、机构组织数据并纳入互联网数据,形成全国统一的综合信用数据资源平台,积极培育企业征信等大数据征信产业,分步骤建成全面、统一的社会信用信息体系,为中国社会主义市场经济的发展打牢“基础桩”。
孙丕恕说,政府对大数据在社会信用体系中的建设高度重视。去年7月25日,李克强总理在浪潮集团考察时,现场办公,要求相关部门以云计算、大数据理念,与企业信息技术平台有机对接,建立统一综合信用信息平台,实现“大数据”共享。7月23日,总理在国务院常务会议上也强调构建企业信用信息公示系统,包括国家社会信用信息平台,都要融入“大数据”的思维理念。国家各部委和地方政府也在积极运用大数据技术建设不同领域的信用信息系统,如国家工商总局打造全国企业信用信息公示系统,山东省建设“一网三库一平台”公共信用信息系统等。
那么,我国社会信用体系建设现状如何呢?孙丕恕介绍说,2014年可谓是我国社会信用体系建设的重要一年,不仅出台了《社会信用体系建设规划纲要(2014—2020年)》,国家发改委下发了《社会信用体系建设三年重点工作任务(2014—2016)》,明确提出要制定法律法规和标准体系,对信用信息平台建设和分享等重点工作进行了分工,形成了明确的顶层设计和行动规划。
“这些政策为运用大数据技术加快社会信用体系建设奠定了基础。但在实际推进中,仍需解决条块分割问题,避免出现新的信息孤岛;注重节约成本,实现原有信息资源的复用;丰富信用数据源,保证信用评价的全面性。”孙丕恕表示,国家虽然出台了一系列政策,但在具体实施过程中,仍然面临着一些问题。
为此,孙丕恕建议从组织数据和互联网数据两个方面整合融合入手。首先由政府专门机构整合现有政务业务系统的信用数据,建设基于政府数据的区域、行业信用数据资源平台;然后将金融、商务等层面的商业征信组织数据进行整合,形成区域、行业综合信用数据资源平台;在此基础之上,依托大数据分布式、海量处理技术,按照国家统一的分类目录和数据标准,以及系统间的数据交换机制,将各信用信息平台的数据进行逻辑集中,进行标准化的分类、归并,形成可利用的全国统一信用数据资源平台。
孙丕恕强调,信用数据散落在工商、税务、统计、海关等各业务系统中,政府可以利用大数据技术,在不新建系统的前提下,充分利用原有信息资源,进行各部门内部系统信用数据以及各部门系统间的信用数据整合,这样既能节约成本也能加快建设速度,一举两得。”
孙丕恕还提出了运用大数据技术采集电子商务、社交数据、媒体信息、网络行为、互动评价等互联网公开信息,建设信用数据第二轨的建议。他说,当前信用数据的来源不再局限于传统的财务、信贷、保险、信用历史等传统领域和组织内数据,更扩展到电子商务、社交数据、网络行为等领域。
鉴于此,孙丕恕主张将互联网数据纳入综合信用信息平台中,建立覆盖全社会的信用信息系统。“利用大数据技术萃取互联网中的高价值信用数据,并通过组织内数据和互联网数据的比对,挖掘信用信息之间的关联性,描绘信用主体信用全貌,能够通过更全面的数据来综合评判信用主体,实现数据的全面性和数据保真。”
此外,针对目前由于数据权属关系不清而导致的信用数据采集难题,孙丕恕表示,由于国家也没有相应的制度来保障,建议通过政府授权和市场化手段来规范数据的采集,对于纳入政府信用信息平台的数据,由政府依据有关法规、参照信用信息采集目录,授权大数据采集机构予以采集,其他情况则可以通过市场化的手段来解决。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22