传统征信PK大数据征信 谁能拯救P2P
伴随着P2P的火热发展,市场对征信的需求,从未如此迫切。
近日,由中国投资协会与上海 Oppland 联合举办的“中国 P2P 网贷征信发展高峰论坛”在深圳召开,这也是国内首次专门针对P2P网贷的征信会议。芝麻信用、鹏元征信、腾讯征信、上海资信、安融征信等国内知名征信机构的高管以及FICO中国区总裁陈建等代表齐聚一堂,分别就中国征信的现状与发展进行了探讨,保护个人隐私、完善惩戒机制及法律法规、加强行业自律等,成为热议的话题。
中国P2P平台面临的征信现状
腾讯征信总经理吴丹指出,当前中国征信体系现状是,央行的征信系统虽然覆盖了8亿人,但真正和银行有信贷关系的只有3亿人。也就是说,在中国13亿人口里,有银行信贷记录的人,占比不足25%。这将导致很多人的融资需求很难得到满足。
安融征信总经理常胜进一步表示,P2P机构面临的征信现状是四大问题:P2P平台目前没有纳入央行征信系统中,难以直接获得央行征信服务;央行征信报告无法全面、有效地反映借款人在非银行机构间的借款信用信息;国家公共部门信息公开程度远未到位,多数信用信息获取难度大;P2P机构间信息相互独立,非银行机构间的借款人征信、惩戒机制未有效建立。
“P2P机构无法有效掌握借款人在各类民间机构的信贷信息,难于识别借款人在民间机构存在的多头借贷、恶意骗贷情况。”他指出,民间信贷信息的缺失,导致小额信贷业务面临重大风险。
传统征信VS大数据征信,谁能拯救P2P?
从类型看,目前市场上的征信机构主要包括:以上海资信、安融征信为代表的一类机构,采用的是同业信息分享模式,即客户查询一条信息需要先共享一条相应的信息;其次,以腾讯、阿里为代表的一类互联网公司;再次,是以平安、宜信、拍拍贷为代表的一类金融机构。
P2P平台征信采取的模式主要包括传统官方征信模式(如平台通过具有央行背景的上海资信间接查询借款人信用信息记录)、大数据征信模式。
值得一提的是,前一种模式面临的难题是征信数据不全、平台上传数据积极性低、更新不及时、接入门槛高等问题。而后一种模式,其优点在于数据来源广泛,弥补传统征信覆盖面不足的缺陷;数据类型多样化,不局限于信贷数据,更能全面反映个人信用情况。其难点在于:信息过多引起的数据杂乱,整合多方数据困难,且数据相关性分析需要较长时间和实践来检验,短期内信用评价数据精准性较低。
此外,盈灿咨询高级研究员张叶霞指出,大数据征信也面临着法律风险,在个人隐私保护上较难把控。“征信机构在未告知可能的不利后果及取得书面同意情况下,不得采集个人的收入、存款、有价证券、商业保险、不动产的信息和纳税数额信息等。”
“发展征信,最重要的是惩戒机制”
前海征信数据分析中心副总经理潘叡表示,征信所必须的风险违约数据是金融行业特有的数据,缺失风险违约数据的征信数据将是无本之木,引入金融大数据至关重要。“而信用评分体系,需要长期、大量、全面的风险违约数据和行为特征数据的共同积累。” 她认为,目前的征信市场规模小,扩大市场规模应该鼓励更多拥有海量客户数据的企业参与,发展征信业务。
潘叡同时强调,征信市场的有序发展,需要切实保障客户个人的信息安全。“在保护个人隐私不受侵害的同时,加强对个人的信用管理和征信知识教育,使消费者更多地了解如何管理好自己的信用,为自己的信用行为承担更多责任。”
中国人民银行参事、中国人民银行研究局原副局长李德在出席上述会议时也表示,互联网金融的发展,促使征信业和金融业的发展进入了一个新的阶段。但当前,我国信用体系建设还面临着很多问题,有待提高和改善。从目前来看,为争取经济利益而失信的情况,时有发生。我国征信市场的发展时间不长,与欧美存在较大差距。在产品的开发等征信技术方面,也有很大距离,且征信从业人员的素质有待于进一步提高。
“征信机构希望多采集和提供各种信息,但是也容易侵害信息主体的隐私。行业发展和监管始终是一对复杂的矛盾。”他指出,征信系统的发展完善,离不开法治建设,要进一步制订各种管理办法,同时,建立信用体系标准体系,扩大以后信用信息范围。
芝麻信用总经理胡滔也表示,在这一新的大数据征信市场,怎样一方面提高交易信息的透明度,另一方面又能有效地保护个人隐私,不造成客户个人信息暴露方面的恐慌,这需要国家法律法规的完善,同时,还要加强行业自律。
她指出,信用,不是一蹴而就。发展征信,最重要的是惩戒机制,“有一个完善的惩戒、奖励机制,很多人都会去向好的方面去做”。
此外,胡滔指出,中国征信市场,刚刚开放,更多应该是合作的模式。在大数据征信方面,如何更低成本、高效率地收集有价值的信息,都需要共同探索和摸索。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28