互联网+大数据的征信:技术变革推动征信业发展_数据分析师
技术变革对征信业的发展起到了非常大的促进作用。征信最早起源于消费分期,需要对消费者进行信用评估,但当时更多的是通过口碑积累的定性判断,没有定量描述。进入电子化时代后,数据得到了沉淀和积累,我们开始使用数据统计模型来计算和评估信用,这极大地推动了行业快速向前发展。在今天的互联网时代,数据承载量非常大,任何数据都可以成为信用的一部分,即我们可以利用数据与信用的关联度,深层次挖掘信用数据。人工智能算法模型不止是对过去的统计,也包括对未来的预测,它可以帮助我们更好地刻画违约概率和信用状况。
芝麻信用是在大数据互联网模式下建立的征信系统。阿里巴巴从十年前开始发展电子商务时,就把信用体系建设作为最重要的一环,但最近几年我们才真正开始进入征信行业,还是新兵。芝麻信用的logo上有句标语——“点滴珍贵,重在积累”,这是我们认为信用应有的内涵。芝麻是很有营养的食物,每粒芝麻都不大,但通过点滴积累,将有益于社会的健康发展。
互联网+大数据征信:广泛、多维、实时
首先,征信人群覆盖广泛,可作为征信体系有效补充。人民银行征信中心在征信数据方面做得非常出色,有效地解决了信用风险问题,帮助金融行业持续健康发展,大大提高了金融的获得性。同时我们也看到,目前只有不到4亿人在央行征信系统有信用记录,还有很多人没有信用记录数据,在获得金融服务时,存在一定的门槛。中国有6.48亿网民,人群覆盖面非常广,通过对他们在网络上留下的痕迹进行数据挖掘和分析,能够对目前的征信状况进行有效补充,让更多在互联网上有数据的人,通过刻画得出的信用状况,也能得到金融服务,当然还包括生活服务。
其次,征信信息广谱多维。现有征信记录主要是个人信息加信贷记录,而互联网上的行为记录非常多,我们可以用大数据的方法计算互联网上万个变量,将更多信用记录以外的信息纳入征信体系。结合现有身份记录和信贷记录,以及生活类数据,再加上互联网数据,可以得到更多广谱信息来刻画信用。
最后,征信数据实时鲜活。大数据的两个主要特点是存量、热数据,它不再是离线的事后分析数据,而是在线实时的互动数据。如果某个人有违约行为记录,会立刻被刻画进来,使当前业务的快速决策更加有效。
运用大数据征信模型全面刻画信用
信用是一笔巨大的资产,让它成为一个可衡量、可变现的资产是我们的愿景。我们的优势在于互联网数据,但不仅指交易数据。多年来,用户通过第三方支付缴纳水电煤气费、信用卡还款以及物流信息也是重要的数据来源。当然,公共政务数据也很重要,此外还有用户自主上传的数据。这些数据能够帮助我们更好地描述以及准确地刻画个人信用。我们输出的是信用分,基于数据来构建决策引擎,以便向用户输出更有价值的服务。
大数据征信模型与传统评分体系有所不同。我们深度融合了传统信用评估与创新信用评估,开创了大数据征信模型。在模型中,信用历史是非常重要的一项,其他维度包括身份特质、履约能力、行为偏好和人脉关系(此项分数比重稍低)。通过这五大维度,我们建立了刻画个人信用全貌的模型。我们的主要切入点在于,使普通老百姓感受到信用的力量和价值,使他们今后在生活中注意培养信用意识,并在全社会建立起信用文化。
净化互联网环境
在合法合规的前提下,大数据征信公司应科学客观公正地评价个人的信用水平,通过输出各种标准化和定制化的身份识别、反欺诈、信用风险识别与跟踪产品与服务,赋能合作伙伴,并一起推动中国诚信文化的传播和诚信体系的构建。
基于大数据7×24小时在线运算能力,芝麻信用有非常强大的身份识别和反欺诈能力,能够以商业化的方法净化互联网环境。随着生物识别技术的发展,生物特征的识别率、准确性、可靠性可以大大提高,再辅之其他识别方法,可以非常精准、可靠地识别人,这样就能将人与账户和设备关联起来。基于这套识别体系,能够充分了解网上的行为主体。今年3月,我们在德国展示了人脸识别技术,我们的样本非常大,识别可靠性也不错,我们对此抱以期待。
另外,通过账户行为分析,我们能够准确地刻画人的行为,以此判断是否出现行为异常,带来安全隐患,帮助合作伙伴进行反欺诈识别。未来,反欺诈将回到“以人为本”,而不是以账号为中心。线下查询信用一定要本人持身份证来操作,身份识别对网上查询来说也很关键,确认是否本人非常重要,我们在这方面有强大的手段。
我们的目标是,构建赋能商业与金融机构的开放式大数据平台。上层是不同机构,中层是通过解决方案进行决策引擎,下面是通过大数据和模型,在取得授权的情况下,开发基于行业的应用。这是一个持续学习及沉淀经验的平台,提供了很多可以不断细化的工具,并且是实时监控的专业级数据安全管理。此外,基于云平台的计算,需要做好云端数据安全管理。我们不仅输出信用分或征信报告,更是搭建了一个开放数据共创的云计算平台,并基于云平台来构建数据的决策引擎体系,帮助合作伙伴实现商业目的。
开放政务信息源 加快信用领域立法
对于央行大力促进征信行业的发展,推动社会征信体系的建设,我们举双手赞成。同时,我们也提出两点建议。
首先,开放政务信用信息源。开放数据将产生巨大的社会价值,我认为,可以向符合资格的机构开放信息源,这些机构取得了国家许可执照,便于接受监管。如果他们能真正用市场化手段把这些数据运用起来,并回馈社会,将产生非常大的社会价值。
其次,信用领域立法应当平衡公民隐私保护与个人信息数据合法利用。这将使征信机构的业务开展有法可依,有利于征信行业的长远健康发展,促进社会信用体系建设。同时,政府的立法能够提升普通民众对征信行业的了解、接纳和信任程度,为征信行业的发展营造有利的大环境。无论法律细节完善与否,芝麻信用都会充分重视保护用户的隐私与合法权益。
数据分析咨询请扫描二维码
一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21