热线电话:13121318867

登录
首页精彩阅读在机器学习方面使用 R + Hadoop 方案真的有那么好2
在机器学习方面使用 R + Hadoop 方案真的有那么好2
2015-05-15
收藏

机器学习方面使用 R + Hadoop 方案真的有那么好2


第3、4步,这里虽然举了很简单的例子,但这些是在数学模型和数据模型上是最没有开发压力的,需要关心的只是资深程序员的功底了。举例说明,文本挖掘NLP)统计完词频你还是得会空间里做PCA(或者其他形式的大矩阵加工);如果不然,只引入HMM模型和基础字典树的话,学习成本就只有学习贝叶斯理论了,并且仍然可以高效并行的解决NLP问题,有兴趣的可以参考Viterbi算法和CRF算法。

大数据的幻觉:存储和计算的冲突

大数据处理,多大算大?像我说的,在3,4步出来的数据,原始数据很大,加工汇总完了很小,或者处理起来是高度独立的。分布式存储不影响分析,说是大数据,其实和小数据处理没差别。

需要随时交换资源的聚类,回归,SVDPCA,QR,LU等关系到矩阵分解的计算甚至是高效访问,更进一步还有热数据在内存上而不是物理存储上的多次迭代,这才是大数据真正的挑战。

那些有监督的分类树,把数据集切成1000份并且有冗余的给500台机器每台3-5份数据最后得到集成的分类结果,我很难称其为“大数据计算技术”,它的本质和挖矿机每秒能做无数个高度同质化的hash计算一样,不需要资源交换,不需要大量通信,它只是“小数据+独立运算后直接能够整合结果”的范围内打转。

数据在物理存储、内存、甚至显存的原地迭代会带来数据重分布;在传统数仓领域数据,重分布其实是对未来效率提高预期的妥协,且里面含有比较多对传统业务稳定数据架构的理解。

大数据时代明显不存在什么数据仓库ER模型稳定性,不知道大家有没有这种体验:一个新需求,一个全新的不着边际的研究性问题的场景下,就能建个新库来进行探索与数据加工整理,数据挖掘。各自为政,实验容易,落地与整合困难。—— 这个情况下如果要频繁走物理存储的话,基于key的重新分布会让数据像煮沸的一锅粥大量占用网络与IO写入带宽,与传统数据库性能的巨大鸿沟是无法回避的问题。因此在这个场景下,Spark、Storm、GPU计算火起来,如Scala、Clojure、Python等含有FP概念的语言走得越来越靠近开发工程师的视线,较高级的封装工具如图模型计算的GraphSQL等组件也浮出水面。而且说句实话,Map(映射)和Reduce(规约)在这些语言中,已经是老的掉了好多年牙的概念了。(FP:Functional Programming我反对翻译成函数式编程,这明明是泛函编程)

大数据概念引入这件事儿是大炮打蚊子——内存内的分析和数据探索,展现(单节点):

*从数据记录条数讲

百万级,R的上限;

千万级-亿级,SAS的上限;

千万级,Python的上限;

*我的使用经验,从数据占用内存的效率讲:加载400M数据会使得

Python(Numpy列存)占用内存500M

R(我谨慎猜测是行存列存和二维表三样都存一份)加载占内存2G

SAS(行存)占用600M,经过表级压缩(依然是行存)150M

*后续的原始处理

尤其是字符串操作这种数据清洗,R几乎不能做,精通shell及regexp的人又做的太容易。

若想用R,这就需要你输入到R的数据几乎就能直接开始跑分析了。若不信邪,我推荐你用readLines加上strsplit来操作读入R的文件,看看他数据清洗的效率和read.delim,和SAS proc import 以及 Python的with as语法相差多少。

*展现方案

只要数据量低于刚才提到的限度,R又提供了最好的展现方案,因为“展现方案是专用而非泛用”的:

a. Hadley最著名的R包之一ggplot2未来会引入SVG等可交互元素。一个具有d3.js可视化特性的绘图包还不让你震惊吗?

b. 百度echarts团队项目被taiyun包装成recharts放在了github上

c. 已经加入RStudio的R统计达人Yihui Xie的作品knitr,能够使用markdown语法动态将数据挖掘结果,图片,视频生成打包放进html或者pdf文档。

说说对手

a. R要比Python现有的可视化包(以matplotlib和pygame为主)更友好,更易于操作。

b. 虽然让从来没接触过前端的人沉浸在用Chrome即可调试的JavaScript里面不太科学,但我爱不释手,而且其核心的展现方式确实未来会加入R。

c. Java风格的Processing,无缝调用java库,封装大量java图形函数、视频相关API、鼠标响应API,可以导出java applet或port成js代码;搞大数据的人必然熟悉java开发,可以几乎0成本又高效快速的使用它。

这几种工具确实各有所长,我个人无法取舍,但平心而论,R是学习门槛、编码效率和产出效果同时最出色的(个人经历原因无法对SAS VA,Tableau,Flex或更一般的BI展现工具置评,其受众因为软件成本,落地性不够等原因,我缺乏使用它们的经验,它们也缺乏对我的吸引力)

归纳下我的理解,R的产出报告类似html+javascript+CSS一样,是适合轻量分析,轻量展现的。

大数据干这件事儿是正道——非结构化大数据批量或者迭代处理:

你的算法已经走到了“万事俱备,只差跑全量” 这样一个对手中的数据很了解的地步了。Wiki 对Revolution Analytics的介绍讲:R didn’t natively handle datasets larger than main memory,这么灵活小巧的工具做个抽样数据分析明明是很好的。

非结构化大数据应用的场景只能是

-你很懂数据分布的细节(也许是项目经验,也许是R上已经做过抽样探索)

-问题适合的算法你了然于胸;增量算法存在;暴力并行计算(矩阵计算,图迭代)没问题

-你觉得把类似Mahout计算的步骤经过代码包装交付给R来做没问题

-你完全不care交互式探索

这是你需要的R应用场景么?或者换一种说法,这种应用场景R有什么优势?调用编译好的cpp库,fortran库是R发挥优势的地方吗?要知道算法效率排名上R<java<C++。算法月内要上线,自己看着办。

说下前鄙team(一个不是专业做数据挖掘的数据部门)的经验:

讲了半天R+Hadoop,不上Mahout,随便搞搞RSnow,准备买SAS。

因为我会SAS(少量用Macro,没用过矩阵,因为没必要)和R(没有学习成本),Python的并行包pp使用中,考虑mahout。

更新:当大数据平台用户不满足于存储,简单加工以及成型算法实施,也开始关注最小查询、交互式探索效率了,诸如Spark的内存解决方案将会更合适。

现team是一个同事至少是硕士(统计/金融/计算机),专做金融行业数据挖掘的小团队。能力和业务场景可以供参考。

* SAS能力覆盖面95%(具备核心价值的数据在服务器上能够处理的量很少超过上亿,主推SAS)

* Python和R覆盖面都在70%+

* Hadoop/大数据概念淡:客户有足够的Teradata、Oracle、SAS服务器

* Hive/Spark:Hive做辅助、灵活仓储,PySpark作为一个可以预期、稳定的数据挖掘平台的接点

结束语

顺便也给数学系、统计系的数据分析师,以及他们的领导们提醒一句:如果员工A有员工B没有的代码开发能力,R又完全替员工B把数学的事情做完了,形成了依赖,那员工B存在的意义是什么?强调数学理论这么一点点优势也都不复存在了。

机器学习算法在不同的阶段适合使用不同的工具,研究和使用接不上也就算了,千万别连工具适合的环境都不懂,作为互联网从业者,这就太盲从了。

精英的研究者是自己做开发的——这话也可以这么说,精英的开发者们自己做研究。每一个模型都不完美,何况新问题涌现的越来越快,现存的模型很可能不满足你的分析需要。所以才要一边扎实理论,以最少的尝试嗅到最适合问题的算法,一边以开放的心态接纳和理解新技术的应用场景,深入发展数据挖掘研究,从代码优化改造(山寨)走向技术原创。

一个不好的消息是,不管是从indeed.com职位Post、搜索还是行业生命周期研究看,大数据这几个字正在迅速退掉金色,其名字的价值泡沫正在逐步被挤出。抓住技术的重点与技术适合的场景,对个人以及对行业都是磨刀不误砍柴工的事情。

数据分析咨询请扫描二维码

若不方便扫码,搜微信号:CDAshujufenxi

最新资讯
更多
客服在线
立即咨询