测试:你是否具备企业的数据挖掘能力_数据分析师
1.某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数据挖掘的哪类问题?
A. 关联规则发现
B. 聚类
C. 分类
D. 自然语言处理
2.以下两种描述分别对应哪两种对分类算法的评价标准?
(a)警察抓小偷,描述警察抓的人中有多少个是小偷的标准。
(b)描述有多少比例的小偷给警察抓了的标准。
A. Precision, Recall
B. Recall, Precision
C. Precision, ROC
D. Recall, ROC
3.将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?
A. 频繁模式挖掘
B. 分类和预测
C. 数据预处理
D. 数据流挖掘
4.当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?
A. 分类
B. 聚类
C. 关联分析
D. 隐马尔可夫链
5. 什么是KDD?
A. 数据挖掘与知识发现
B. 领域知识发现
C. 文档知识发现
D. 动态知识发现
6.使用交互式的和可视化的技术,对数据进行探索属于数据挖掘的哪一类任务?
A. 探索性数据分析
B. 建模描述
C. 预测建模
D. 寻找模式和规则
7.为数据的总体分布建模;把多维空间划分成组等问题属于数据挖掘的哪一类任务?
A. 探索性数据分析
B. 建模描述
C. 预测建模
D. 寻找模式和规则
8.建立一个模型,通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的哪一类任务?
A. 根据内容检索
B. 建模描述
C. 预测建模
D. 寻找模式和规则
9.用户有一种感兴趣的模式并且希望在数据集中找到相似的模式,属于数据挖掘哪一类任务?
A. 根据内容检索
B. 建模描述
C. 预测建模
D. 寻找模式和规则
10.下面哪种不属于数据预处理的方法?
A变量代换
B离散化
C聚集
D估计遗漏值
11.假设12个销售价格记录组已经排序如下:5, 10, 11, 13, 15,35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。等频(等深)划分时,15在第几个箱子内?
A 第一个
B 第二个
C 第三个
D 第四个
12.上题中,等宽划分时(宽度为50),15又在哪个箱子里?
A 第一个
B 第二个
C 第三个
D 第四个
13.下面哪个不属于数据的属性类型:
A 标称
B 序数
C 区间
D相异
14. 在上题中,属于定量的属性类型是:
A 标称
B 序数
C 区间
D 相异
15. 只有非零值才重要的二元属性被称作:
A 计数属性
B 离散属性
C非对称的二元属性
D 对称属性
16. 以下哪种方法不属于特征选择的标准方法:
A 嵌入
B 过滤
C 包装
D 抽样
17.下面不属于创建新属性的相关方法的是:
A特征提取
B特征修改
C映射数据到新的空间
D特征构造
18. 考虑值集{1、2、3、4、5、90},其截断均值(p=20%)是
A 2
B 3
C 3.5
D 5
19.下面哪个属于映射数据到新的空间的方法?
A 傅立叶变换
B 特征加权
C 渐进抽样
D 维归约
20.熵是为消除不确定性所需要获得的信息量,投掷均匀正六面体骰子的熵是:
A 1比特
B 2.6比特
C 3.2比特
D 3.8比特
21.假设属性income的最大最小值分别是12000元和98000元。利用最大最小规范化的方法将属性的值映射到0至1的范围内。对属性income的73600元将被转化为:
A 0.821
B 1.224
C 1.458
D 0.716
22.假定用于分析的数据包含属性age。数据元组中age的值如下(按递增序):13,15,16,16,19,20,20,21,22,22,25,25,25,30,33,33,35,35,36,40,45,46,52,70, 问题:使用按箱平均值平滑方法对上述数据进行平滑,箱的深度为3。第二个箱子值为:
A 18.3
B 22.6
C 26.8
D 27.9
23. 考虑值集{12 24 33 2 4 55 68 26},其四分位数极差是:
A 31
B 24
C 55
D 3
24. 一所大学内的各年纪人数分别为:一年级200人,二年级160人,三年级130人,四年级110人。则年级属性的众数是:
A 一年级
B二年级
C 三年级
D 四年级
25. 下列哪个不是专门用于可视化时间空间数据的技术:
A 等高线图
B 饼图
C 曲面图
D 矢量场图
26. 在抽样方法中,当合适的样本容量很难确定时,可以使用的抽样方法是:
A 有放回的简单随机抽样
B 无放回的简单随机抽样
C 分层抽样
D 渐进抽样
27. 数据仓库是随着时间变化的,下面的描述不正确的是
A.数据仓库随时间的变化不断增加新的数据内容;
B. 捕捉到的新数据会覆盖原来的快照;
C.数据仓库随事件变化不断删去旧的数据内容;
D.数据仓库中包含大量的综合数据,这些综合数据会随着时间的变化不断地进行重新综合.
28. 关于基本数据的元数据是指:
A.基本元数据与数据源,数据仓库,数据集市和应用程序等结构相关的信息;
B.基本元数据包括与企业相关的管理方面的数据和信息;
C.基本元数据包括日志文件和简历执行处理的时序调度信息;
D.基本元数据包括关于装载和更新处理,分析处理以及管理方面的信息.
29. 下面关于数据粒度的描述不正确的是:
A.粒度是指数据仓库小数据单元的详细程度和级别;
B.数据越详细,粒度就越小,级别也就越高;
C.数据综合度越高,粒度也就越大,级别也就越高;
D.粒度的具体划分将直接影响数据仓库中的数据量以及查询质量.
30. 有关数据仓库的开发特点,不正确的描述是:
A. 数据仓库开发要从数据出发;
B.数据仓库使用的需求在开发出去就要明确;
C.数据仓库的开发是一个不断循环的过程,是启发式的开发;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30