传统石油企业如何利用“大数据”挖金_数据分析师
“大数据”不是新生事物,百度、谷歌的搜索服务就是典型的“大数据”运用。面对信息时代的冲击,身为工业化时代规模经济代表的传统石油公司受到了时代变局的巨大压力。一方面,传统化石能源面临枯竭,而且开采成本持续上扬;另一方面,人们对环境质量要求日渐苛刻,新能源逐渐成为未来选择,而且其成本也在中国世界工厂的助推下继续下降。这两方面的压力迫使传统石油公司必须转型成为新型的创新型公司。
“大数据”的五大价值体现石油企业从事的勘探开发、炼化、销售、管道储运等业务属于数据密集型行业,历史上已经累积了海量的异构数据。“大数据”对石油企业的价值主要体现在以下几个方面:
1帮助石油企业提高勘探开发决策的效率和水平,实现新的油气增产。如“大数据”可以同时使用钻井和生产数据,将储层的变化情况实时提供给储层分析工程师,为生产人员提供举升方法改造方案。“大数据”也可以用来引导页岩气压裂。
2帮助石油企业发现消费者的消费趋势和潜在需求,进而促进业务创新和开发潜在市场。如在加油站营销过程中,通过完善数据收集分析和监测体系,可追踪每个客户的个性化需求,进而开展定制化服务与管理,并适时推出新的产品和服务,从而吸引和留住更多的客户,以扩大市场份额。
3“大数据”能够帮助石油企业实现对网络舆情、社会动态以及国际形势的监控分析,从而为正确实施“走出去”战略、降低海外投资风险提供保障。如在对外油气合作开发过程中,通过对重点资源国地缘政治、经济动态的分析和把握,能够建立良性互动的竞争合作关系,从而实现从挑战向机遇的转化。
4用“大数据”改进人才管理包括评估雇员敬业程度,识别人员技能缺陷,根据需要修订招聘做法;还可以利用“大数据”提升员工能力,确定投资培训和专业发展目标。
5油田公司利用“大数据”解决方案改善安全,减少作业对环境的影响。比如水力压裂,遭到指控的HSE案例涉及空气污染、饮用水污染以及地震影响。通过越来越先进的地下传感器收集和分析数据,钻井承包商可以更好地知道如何减少注入地层的压裂液用量。利用“大数据”进行HSE管理,不仅可以增进安全,减少对环境影响,还可以使作业更有效并节省作业开支。
中国石油企业的“应对法则”为有效利用“大数据”,中国石油企业需在技术、管理和人才等多方面做好应对。
1应与专业技术公司共同推进相关技术的研究和应用面对推陈出新、高速发展的众多技术,石油企业应积极跟踪、适时引入并试点实施,做好应对“大数据”的技术储备。
2应尽快建立相应的数据应用和信息化管理模式数据是企业的共同资产,只有实现数据充分共享,才能最大化发掘数据价值。因此,需打破传统的部门壁垒,建立涵盖企业全局的数据共享与服务合作机制,进而搭建跨地域、跨部门、跨专业的企业级“大数据”应用中心,形成更为科学的数据价值发掘和应用模式。
3要着力培养“大数据”专业人才由于“大数据”应用涉及多学科、跨领域的知识,既需要精技术、懂业务的复合型人才,也需要数学、统计学和经济学等其他专业人才,更需要大量从事数据分析的数据分析员、数据科学家。但是,目前此类人才缺口较大。未来6年,仅美国就需要14万到19万名拥有数据深度分析专长的从业者。因此,中国企业应未雨绸缪,做好应对“大数据”的人才储备。
4需重视数据资产保护从油田和销售渠道搜集的数据是宝贵资产,国内外的竞争者如果拿到便可从中获益。油气业的“大数据”先驱要建立严格的安全政策,阻止黑客入侵,把安全风险降到最低程度。对于物理资产(如传感器),要像数据资产一样保证它们的安全。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28