有些人认为,“大数据”这一词汇不过是企业营销时的大肆炒作。但即使是那些接受大数据概念的人,也需要消除某些大数据误区。
全球领先的信息技术研究和咨询公司Gartner指出,大肆宣传大数据概念,使企业在选择适当的行动方案时,受到更多困扰,但对消除一些仍存在的误区却毫无帮助。
例如,80%的数据是非结构化的,这是错误的;又如高级分析功能只是更复杂形式的普通分析,分析公司Gartner指出,这也是不正确的。
Gartner公司在已发布的两篇报告《大数据对分析功能影响中的主要误区》和《大数据对信息基础设施影响中的主要误区》中,集中探讨大数据对分析功能及信息基础设施影响中的相关误区,希望展示大数据相关的更多真实情况。以下摘取大数据概念的五大误区。
误区一:在大数据技术部署中,其他人都领先我们
虽然越来越多的企业开始关注大数据技术和服务,Gartner公司测算结果显示,73%的企业正在投入或策划大数据技术,但大多数企业才刚刚开始接受这一技术。
因此,担心竞争对手运用大数据技术快速发展实在是杞人忧天。实际上,只有13%的受访企业真正开始部署大数据相关技术。
大数据的五大误区及其破解之道
Gartner公司表示:“企业面临的最大挑战是怎样通过大数据获得价值以及怎样入手部署大数据技术。大多数企业在试点阶段就遇到困难,因为他们并没有在业务过程或实际用例中运用该技术。”
Gartner公司的结论是:你并没有落后。为实际的任务制定策略,并与IT及业务部门合作。
误区二:数据量很大,而小缺陷无关紧要
有人认为,根据大数定律(Law of Large Numbers),独立的数据缺陷无关紧要,不会影响分析结果。
与更小规模的数据集相比,独立的数据缺陷对整个数据集的影响的确要小很多,但目前,数据量不断增长,数据缺陷与以往相比也越来越多。
Gartner公司表示:“因此,低质量数据对整个数据集的整体影响仍保持不变。此外,企业在大数据环境下使用的大部分数据来自外部数据源,其数据结构和来源未知。”
“这意味着数据质量问题的风险比以往更高。因此,在大数据部署中,数据质量实际上更加重要。”
Gartner公司的结论是:设计出新的数据质量管理方式,并选择数据质量级别。严格遵守数据质量保障的核心原则。
误区三:大数据将取代数据整合能力
企业希望通过读时模式(Schema on Read)处理信息,使用多个数据模型灵活地读取同一个数据源。这种灵活性将帮助最终用户决定怎样按需解释任意数据信息,并实现个体用户数据访问的定制化能力。然而,大多数用户实际上使用写时模式(Schema on Write)。写时模式下用户可描述数据并制定内容,而数据完整性也能保持一致。
误区四:将数据仓库用于高级分析是毫无意义的
有些人认为,高级分析功能可使用新的数据类型时,部署数据仓库则浪费时间。实际上,大多数高级分析项目在分析时都使用数据仓库。
新的数据类型还可能需要提炼,使其适于数据分析。此外,哪些是相关数据、怎样聚合数据以及必要的数据质量级别等都需要企业做出决策。
Gartner公司的结论是:尽可能使用数据仓库存储经人工收集检查的数据集,用于高级分析功能。
误区五:数据湖将取代数据仓库
数据湖解决方案通常被当作企业级平台销售,用于分析原生格式下的各种不同的数据源。但Gartner公司认为,数据湖取代数据仓库,或作为分析基础设施中的重要组件是错误的观点。
与已经成型的数据仓库技术相比,数据湖技术尚未成熟,其功能不够全面。“数据仓库已具备支持多种用户群体的能力。”因此,企业无需等待数据湖技术的成熟。
Gartner公司的结论是:在现有数据仓库中运用Hadoop等数据湖技术。只有在元数据管理技术、工具及培训上投入,才能通过数据湖技术创造业务价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30