有些人认为,“大数据”这一词汇不过是企业营销时的大肆炒作。但即使是那些接受大数据概念的人,也需要消除某些大数据误区。
全球领先的信息技术研究和咨询公司Gartner指出,大肆宣传大数据概念,使企业在选择适当的行动方案时,受到更多困扰,但对消除一些仍存在的误区却毫无帮助。
例如,80%的数据是非结构化的,这是错误的;又如高级分析功能只是更复杂形式的普通分析,分析公司Gartner指出,这也是不正确的。
Gartner公司在已发布的两篇报告《大数据对分析功能影响中的主要误区》和《大数据对信息基础设施影响中的主要误区》中,集中探讨大数据对分析功能及信息基础设施影响中的相关误区,希望展示大数据相关的更多真实情况。以下摘取大数据概念的五大误区。
误区一:在大数据技术部署中,其他人都领先我们
虽然越来越多的企业开始关注大数据技术和服务,Gartner公司测算结果显示,73%的企业正在投入或策划大数据技术,但大多数企业才刚刚开始接受这一技术。
因此,担心竞争对手运用大数据技术快速发展实在是杞人忧天。实际上,只有13%的受访企业真正开始部署大数据相关技术。
大数据的五大误区及其破解之道
Gartner公司表示:“企业面临的最大挑战是怎样通过大数据获得价值以及怎样入手部署大数据技术。大多数企业在试点阶段就遇到困难,因为他们并没有在业务过程或实际用例中运用该技术。”
Gartner公司的结论是:你并没有落后。为实际的任务制定策略,并与IT及业务部门合作。
误区二:数据量很大,而小缺陷无关紧要
有人认为,根据大数定律(Law of Large Numbers),独立的数据缺陷无关紧要,不会影响分析结果。
与更小规模的数据集相比,独立的数据缺陷对整个数据集的影响的确要小很多,但目前,数据量不断增长,数据缺陷与以往相比也越来越多。
Gartner公司表示:“因此,低质量数据对整个数据集的整体影响仍保持不变。此外,企业在大数据环境下使用的大部分数据来自外部数据源,其数据结构和来源未知。”
“这意味着数据质量问题的风险比以往更高。因此,在大数据部署中,数据质量实际上更加重要。”
Gartner公司的结论是:设计出新的数据质量管理方式,并选择数据质量级别。严格遵守数据质量保障的核心原则。
误区三:大数据将取代数据整合能力
企业希望通过读时模式(Schema on Read)处理信息,使用多个数据模型灵活地读取同一个数据源。这种灵活性将帮助最终用户决定怎样按需解释任意数据信息,并实现个体用户数据访问的定制化能力。然而,大多数用户实际上使用写时模式(Schema on Write)。写时模式下用户可描述数据并制定内容,而数据完整性也能保持一致。
误区四:将数据仓库用于高级分析是毫无意义的
有些人认为,高级分析功能可使用新的数据类型时,部署数据仓库则浪费时间。实际上,大多数高级分析项目在分析时都使用数据仓库。
新的数据类型还可能需要提炼,使其适于数据分析。此外,哪些是相关数据、怎样聚合数据以及必要的数据质量级别等都需要企业做出决策。
Gartner公司的结论是:尽可能使用数据仓库存储经人工收集检查的数据集,用于高级分析功能。
误区五:数据湖将取代数据仓库
数据湖解决方案通常被当作企业级平台销售,用于分析原生格式下的各种不同的数据源。但Gartner公司认为,数据湖取代数据仓库,或作为分析基础设施中的重要组件是错误的观点。
与已经成型的数据仓库技术相比,数据湖技术尚未成熟,其功能不够全面。“数据仓库已具备支持多种用户群体的能力。”因此,企业无需等待数据湖技术的成熟。
Gartner公司的结论是:在现有数据仓库中运用Hadoop等数据湖技术。只有在元数据管理技术、工具及培训上投入,才能通过数据湖技术创造业务价值。
数据分析咨询请扫描二维码
数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20在现代社会的快速变迁中,选择一个具有长期增长潜力的行业显得至关重要。了解未来发展前景好的行业不仅能帮助我们进行职业选择, ...
2024-11-20统计学专业的就业方向和前景非常广泛且充满机遇。随着大数据、人工智能等技术的快速发展,统计学的重要性进一步凸显,相关人才的 ...
2024-11-20