中小企业怎么玩转大数据
大数据分析的基础是什么?是数据;数据的金矿又存在哪里?企业管理者自然会联想到IT企业。诚然,web2.0时承 前启后,网络不再是企业一方的舞台,人人都可以在网络上留下自己的痕迹。如今的互联网企业也就拥有了海量的数据和大数据分析的天然基础。
另一方面掌握“大数据”先机的则是使用“芯片”的各类设备制造企业,在机器中植入小小的芯片,就可以记录用户的各项操作使用行为,也为分析用户行为积累了大量的数据基础;当然,在大数据浪潮中少不了大型连锁超市、金融服务中心等掌握具体消费信息的行业领域。因而我们也看到,在各类介绍“大数据”的书籍里,案例大多出自以上行业,它们的存在,会积累大量的数据。那么是否游离在这些行业之外的企业就与“大数据”绝缘了呢?是不是这些企业拥有这样的数据就足够了呢?
数据有五大类别,并不受特定的行业限制
企业掌握的数据通常有几个类型:一类是网络数据,通过互联网加载代码记录用户的浏览及点击行为,从而记录下海量的网络浏览点击痕迹数据;第二类数据是通过获得芯片记录的产品使用痕迹数据;当然还有一类数据是消费行为痕迹数据,它为少数特定行业企业所有,并且数据跨越了多类产品、多个行业,如超市掌握的每笔消费数据记录、淘宝掌握的店主的销售往来信息等。
但这三类数据首先只集中在特定的行业或者企业中,互联网行业或者设备的生产制造业、零售行业是掌握这类数据最多的行业,此外这三类数据的特点在于“人们在无意识下自然”产生的,因为它难以与消费或使用的“人”建立联系而显得“生硬而不够鲜活”,因此使用这类海量数据进行分析能发现关联,但往往难以解释为何会有这样的关联,能够发现消费特点,但往往难以在精准营销的执行层面加以转化。毕竟,我们往往不知道具有这些行为的都是什么人。
当然,另一类数据能够在一定程度上弥补这样的缺陷,企业内部的销售、客服部门往往会记录更多这样的信息,能够对“人”本身进行更多的补充描摹,但这类数据往往时效性较弱,数据库不能及时更新导致信息错误率较高。但企业似乎忘记了,社会化媒体时代下,个人自媒体爆发带来了海量的数据,“粉丝”的关系让企业得以区分社会化媒体中个人与企业品牌的远近关系。作为第五类数据,“自发”的特点保证了信息准确性,“自媒体”特质对理解企业目标群体不乏一个近乎免费的通道,而它恰恰不受特定的行业限制,为一般行业企业涉水“大数据”提供了丰富的数据基础。
“大数据”的基础在于数据间的关联
而当真正想借“大数据”做挖掘性工作时,企业又发现,手中的数据似乎有点无从下手;这种现象在企业中大为常见——大数据既然不必要求数据是规则的,那正好适合中国的大多数企业,他们在高速的发展中,积累了大量的信息,但由于重速度而轻规范,信息本身也会有很多的缺失或者模糊。因而我们常常能够接到这样的需求:我们企业几年的发展,内部各个部门都有很多的数据,积累了几万条销售的数据,积累了几万条客户的信息,看看这些信息能否尽快帮我们找到有价值的信息。
但拿到这些数据后,让人大跌眼镜。销售数据只是看到每个被销售的产品的销售时间、价格、店面信息,没有购买者的任何信息;而客户信息则对客户个人的性别、年龄、联系方式等信息较为完整,而对购买过的产品方面记录较少。换而言之,企业提供的是彼此割裂的数据。
《大数据时代》作者维克托明确指出,大数据时代最大的转变就是放弃对因果关系的渴求而取而代之关注相关关系;“尿片与啤酒”关联的发现也是这两个产品经常出现在一张超市购买单据上,如果购物的男人将纸尿裤和啤酒分别结账,那显然多么有效的数据挖掘工具也难以发现二者之间的关联关系。
因此,大数据挖掘的基础是数据之间彼此的关联,单独的、片段化的数据再多,在大数据环境下也无法实现其本身的价值;而面对中国大多数企业内部各自为战的现状,如果企业需要将原有的数据进行深度分析的话,就需要建立数据彼此之间的联系,或是以“人”的信息(姓名、手机号、住址)或是以产品信息(如产品的唯一编码),将企业中各个渠道的数据打通,才可能真正找到“数据的相关关系”。
数据彼此的关联也可是“虚拟的”
同时,并不是所有的数据之间都能建立类似的真实对应关系,在这种条件下如何利用大数据为企业获得增值信息呢?左图给出一种利用社会化媒体进行模糊匹配的方式,帮助企业更好地理解目标群体,即便现有的数据不能全面反映人群的特质,但可以通过社会化媒体实现“信息转化”,在社会化媒体中找到具有类似特质的“网络虚拟人”,并通过这一特质人群在各类社交媒体的全面信息,从而间接“实现”对目标人群的全面描摹。
冷静下来再看,社会化媒体的井喷为众多没有“先天数据条件”的企业提供了“卷入大数据浪潮”的机会,“大数据”必将跳出“痕迹数据关联分析”的处理模式,从“行为”的相关与预测发展到在web3.0上的360度分析与定位。而基于社会化媒体海量多维数据的“虚拟关联”模式的开启,为更多数据彼此关联提供了一种可能,可以预言,在不久的将来,将有更多的企业打破“数据格式”本身的束缚,从丰富的海量数据中找到属于自己的宝藏。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师这个职业已经成为了职场中的“香饽饽”,无论是互联网公司还是传统行业,都离不开数据支持。想成为一名优秀的数据分析 ...
2024-12-26在数据驱动决策成为商业常态的今天,数据分析师这一职业正迎来前所未有的机遇与挑战。很多希望转行或初入职场的人士不禁询问:数 ...
2024-12-25数据分析师,这一近年来炙手可热的职业,吸引了大量求职者的注意。凭借在大数据时代中的关键作用,数据分析师不仅需要具备处理数 ...
2024-12-25在当今数字化变革的浪潮中,数据分析师这一职业正迎来前所未有的发展机遇。回想我自己初入数据分析行业时,那种既兴奋又略显谨慎 ...
2024-12-25在当今信息爆炸的时代,数据已经像空气一样无处不在,而数据分析则是解锁这些信息宝藏的钥匙。数据分析的过程就像是一次探险,从 ...
2024-12-25在职场上,拍脑袋做决策的时代早已过去。数据分析正在成为每个职场人的核心竞争力,不仅能帮你找到问题,还能提供解决方案,提升 ...
2024-12-24Excel是数据分析的重要工具,强大的内置功能使其成为许多分析师的首选。在日常工作中,启用Excel的数据分析工具库能够显著提升数 ...
2024-12-23在当今信息爆炸的时代,数据分析师如同一位现代社会的侦探,肩负着从海量数据中提炼出有价值信息的重任。在这个过程中,掌握一系 ...
2024-12-23在现代的职场中,制作吸引人的PPT已经成为展示信息的重要手段,而其中数据对比的有效呈现尤为关键。为了让数据在幻灯片上不仅准 ...
2024-12-23在信息泛滥的现代社会,数据分析师已成为企业决策过程中不可或缺的角色。他们的任务是从海量数据中提取有价值的洞察,帮助组织制 ...
2024-12-23在数据驱动时代,数据分析已成为各行各业的必需技能。无论是提升个人能力还是推动职业发展,选择一条适合自己的学习路线至关重要 ...
2024-12-23在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19