电商企业如何把握大数据_数据分析师考试
什么是大数据?在大多数人理解中,是企业用数据来优化自己的流程、产品以及决策,让运营变得更有效。但我认为,这还不能涵盖大数据范畴。
事实上,大数据是一个包含了技术和商业两个层面的综合性的概念。
一方面是技术层面的。在技术层面,数据并不是一个新鲜的概念,从计算机诞生的那一刻起就伴随着数据的产生,但是在那个时候并没有大数据的概念。一直以来,要进行海量的数据存储、高效的数据计算,都需要有非常强大的计算机来支撑,而动辄百万美元计价的大型机的硬件成本和每月数万美元的维护成本并不是每一个企业都能够承担的。在高昂的成本面前,数据的使用成为了企业的一种“奢侈品”,并没有得到很大的普及。最近几年来,技术在不断地进步和发展,类似于Hadoop这样的分布式存储和计算系统的出现,大大提高了数据存储和计算的效率,使海量数据应用于商业变成了可能。大数据的概念也开始被越来越多的人关注。
另一方面是商业层面的。对于商业而言,最重要的是能够让企业通过数据获得更多的收益。传统意义上的数据是面向业务的,对于每一条业务线来说都会有数据的积累,相信很多企业已经在这方面做得很好了,可以说“量”已经足够了。如果连“量”这方面都没有做好,那我觉得有必要先去修炼一下内功,毕竟数据不是一天就能建成的。而能够让商业产生更大价值甚至颠覆性创新的则是多样性的数据。这个多样性是指能够将多种数据连接在一起看,通过彼此之间的关联和互动让数据产生商业的价值。比如最近一段时间流感比较严重,谷歌公司的“流感趋势”预测模型就受到了很多人的关注。作为一家互联网公司,谷歌是如何知道流感趋势的呢?它的核心价值就在于大数据的应用。谷歌通过分析发现,在流感的不同阶段,某些与流感有关的药品、症状的关键词会表现出不同数量和特征,谷歌正是通过这种多样性数据的关联来发现了数据价值。
对于企业来说,良好的指标体系可以增加企业可预见的范围。通常情况下,数据可以通过是否正向作用、是否可预见两个维度归纳成四个类别(见图1)。对于企业而言,那些具有正向作用且可预见的数据通常作为运营指标进行关注,而那些具有反向作用且可预见的数据通常作为风险来规避,这都是需要先修炼好的内功。但是除了图右边可预见的数据之外,还有大量的不可预见的数据。例如双十一,淘宝的目标是单天销售100亿,结果却实现了191亿,那么91亿便是不可预见的惊喜。对于我们来说,我们需要把不可预见的变成可预见的,也就是把惊喜变成可预见的,让它发挥更大的价值,把悲剧变成可预见的,最大可能地减少它。
缩小未知世界
如果说上述都是对大数据定义的解释,那么下面用一张图更清楚地展现企业与数据的关系。
如图2所示,横坐标上方的是企业内部数据,包括财务数据、运营数据、市场数据这类公司的结构型数据,以及WA和MA,即网站的分析数据和移动应用数据;下方是企业外部数据,包括百度、SNS的社会数据,和comScore、Hitwise、艾瑞这类的第三方数据,这些往往是竞争对手的数据。
事实上,这四类数据都没有得到电商企业足够的重视。
大多数有传统商业背景的电商企业,对网站分析数据都不太专注。但往往它们一旦能用上网站分析数据,会大大改变自己内部的数据。
例如,一个消费者看了但不买,没有产生消费,所以这组数据不可能出现在企业的经营数据中,绝对是网站分析数据。换而言之,如果要知道企业未来的机会,起码可以把那些看了不买的消费者转变成客户,如果能转化20%,你的市场会增加多少?
在这种情况下,如果你无法解释市场份额增加的原因,那么这个就属于“惊喜”;但当你看懂数据,当“惊喜”变得更加确定并做出相应的调整,不可知的东西慢慢变小,公司也会越来越聪明(Data smart)。
相比较对未知“惊喜”的探索,对未知风险的警惕显得更为重要。
当竞争数据化,不再是去看对手做了什么事,而是从那些“微声音”中感受危机,例如,以前A公司的消费者,有10%是先去B公司看看后再来A公司的,现在这个比例变成了30%,说明B公司的影响力比以前大,一旦B公司策略有变化,对于A公司便是危险。
所以,需要用一些非结构化的数据不断补充,这就是大数据的范畴。
除此之外,SNS、百度这类的社会数据也是很大一块非结构化的数据。这些社会数据不单只是用来评价公司口碑的好坏,同样能帮助公司进行一些决策,只是一直没有找到这个连接点。
表面上,这套框架已经很全面,但是尽管第五个元素没有加入,可运营的能力还是极低。所谓的第五元素便是人,当不同的用户群走进去后,整套框架立刻变得千变万化。
谁拥有大数据?
那些拥有稳定、丰富数据源的公司,淘宝、百度、腾讯是绝对自有数据源的公司。艾瑞咨询技术副总裁郝欣诚同意这一说法,认为一些淘宝店铺不能称为有稳定丰富数据源的公司。
因为他们的视角往往停留在本身的店铺内,当在他们店铺中没有出现某种人,便认为某种人是不存在的。但淘宝的视角会更高,更容易看到全局,他们拥有海量的数据,只要某种人在一家店铺出现,便能判断这种人是存在的。
如果单纯停留在自身数据中,往往容易出现盲人摸象的尴尬,用片面的数据错误地描绘消费者的全貌。当淘宝的卖家离开淘宝数据的支撑,只能称之为有数据分析,决不可称为大数据分析。
所谓的大数据,是需要跨视角、跨媒介、跨行业的海量数据,也可以理解为数据的收集方法。当数据的规模和丰富度达到一定程度,大家才开始提出大数据的概念。
而如今的电商,大数据之路又行至何方?
电商数据现状
“如果不到10万单量,在基数这么低的情况下,能分出什么维度来吗?根本不需要大数据。”NOP创始人刘爽认为,只有淘宝、京东、亚马逊这样级别的公司,才有海量数据,才需要大数据。
现在的电子商务企业,日均能达到十万单的少之又少。在有海量数据积累的基础上,还要有一套优秀的BI系统,而且必须是按公司需求定制,才可能实现大数据。
对于现在大多数的电商企业来说,根本没有走到这一步。
刘爽举例说,宏观调控在小市场的确有效,一旦市场变大便依赖市场化。由此可见,在企业小的阶段,有经验的拍脑袋效率最高。
的确,不少卖家对自身的数据都没有一个标准化运营、收集、分析的过程。所以谈大数据,多数只是痴人说梦。
以库存举例,多数淘宝卖家对自己库存的即时数据并不了解,更不可能清楚库存销售的利润。往往出现这种情况——库存都是卖不掉的货,好卖的货早已经断货。如果光看库存,会发现指标挺健康,但所谓的库存基本是坏账,所以根据库存预计销售利润,不是每家企业都做得出来的。这就说明数据管理水平有待提升。
在企业内部,有大量的决算数据需要耐心收集,但一般商家都没有专门的部门做这件事情,所以很难获得高质量的数据给自己提供决策支持。
事实上,卖家之所以对数据茫然,是因为数据压根不全,对数据的管理和获取不够,直接导致无法利用数据。
而大数据之所以被热炒,是因为少数巨无霸企业在其中获得了巨大商业价值。
例如亚马逊,从亏损到盈利,大数据功不可没。不管是巧合还是时机成熟,亚马逊的确在采用了重量级的大数据分析后,业绩才逐渐好转。可以想象,亚马逊很多基于数据的决策都有着大数据的影子。
亚马逊上,囊括了美国所有生活必需品。因此它充分掌握消费者的原始数据,做出来的判断具有预测性。甚至可以向商家定制在某一价格段有某个特殊性能的商品,只供亚马逊,并能保证热卖。
而这一切都是根据亚马逊所具有的大数据源,进行收集、分析所推测出来的。
辨别大数据与数据
究竟大数据这个概念是否“虚高”呢?
毕竟像亚马逊这样的公司屈指可数,大多数的电商企业还处于起步阶段。这不得不让人重新思考大数据和数据之间的关系。
大数据与数据是两个极易混淆的概念。对两者的区别,每个人的理解也大相径庭。
刘爽认为,大数据是基于交易、商品与用户的匹配。商品很多,人很多,把它们精准地匹配在一起,是很难的一件事情。
普通的企业内部业务经营指标——库存、成本、商品,这是一个封闭的结构,是由企业决定的,好的分析或许可以对它施加影响。大数据很难强行调控,只能追踪,想办法匹配。
而艾瑞咨询分析师傅志勇则认为,之前所说的数据,是一种狭隘的定量数据,利于企业内部流程优化,而大数据是在定量数据的基础上,做了一个更大范围的延伸,给企业提供决策支持。
也可以理解为,大数据是对数据本身的价值权重进一步的诠释,即数据在决策中所起到作用的权重在提高。
大数据其实是一个更大范围的数据,就是从最初获得信息一直到最后的销售数据。丽人丽妆CEO黄韬觉得大数据的数据量往往很大,而且一旦精细研究,数据量的增加也会异常惊人,甚至超出运算能力。
暂且不管大数据和数据如何定义,对于目前的电商企业而言,仅仅是希望通过数据分析带来流程的优化。
对此,郝欣诚认为,在未来的两到三年内,电商企业多去关注营销领域,会出来一大批大数据的营销工具。
大数据的价值是润物细无声,每一个消费者和卖家都在享受大数据的成果,但是在使用时,并不觉得是大数据。
其实,最早买百度关键词,百度会提供一个关键词排名筛选系统,搜一个词,系统会自动提示其他相关热销词,并告知哪些词更容易接触同类消费者。这是最早使用大数据的系统,是基于百度每天上亿次搜索的总结。
每一个买百度关键词的公司,其实都在使用数据产品。此外,淘宝直通车、数据魔方都也是大数据的衍生工具。
如果卖家希望在大数据领域分得一杯羹,必须清楚自己只是数据的使用者。要重视大数据的使用,灵活使用大数据工具,这些工具才是目前走在大数据最前沿的技术。
大数据对商家的价值,很大程度上取决于第三方服务商能够提供怎样的数据工具。作为商家,应该从几十家甚至上百家工具提供商中,找到适合自己的大数据工具。
着眼情报数据挖掘
除了大数据工具的运用,情报数据也是电商公司真正应该关注的。
所谓的情报数据处理人员,从日常的工作场景来看,出去奔波收集情报的工作占了多数份额。他们会跟上下游供应链,以及进行跨部门沟通。例如,一个采购人员应该去生产线,去分析每家供应商的生产水平如何,优秀的工厂和二线工厂的生产周期区别,哪里的原材料采购价格最低。一般来讲,这样的一条情报能使用一到三年。
虽然数据性不强,但这些情报价值十分高。郝欣诚说得更为直截了当:“讲数据挖掘不如讲情报挖掘,情报挖掘才能够为电商企业提供真正生产力级的支持,如果情报挖掘都没做好,就想把它数字化和量化,有点操之过急。”
举个夸张的例子,当一个品牌商拥有20万家生产厂商无从选择时,为了找一个与需求相匹配的生产企业,才需要建立一个大数据模型,进行筛选。而现在只需情报先行,当规模达到一定程度难以进行决策时,才使用数据挖掘技术。
的确,大数据的应用要渗透到中国的电商企业内部,还有很长的路要走。
而营销领域则不同,市场营销的数据模型已经成熟,而互联网又带给电商企业足够多的信息源,大数据的应用已经可以直接给决策层提供建议,可以理解为“有米下锅”。
以淘宝原创女装品牌橡菲为例,他们会每天花费500~1000元做情报挖掘。他们有专门的情报收集人员,根据数据魔方、量子恒道、CRM系统分析数据,再把这些信息结合辅助最基本的经营决策,考虑下一款新商品款式如何,基于对老会员的分析,是否需要拓展新类目等等。
比如,当橡菲有50件商品、100万现金时,究竟应该怎么安排生产?情报挖掘人员会提醒决策层,这其中有2件爆款、6件长尾、2件滞销品,甚至可以提出对各款商品的补货、清仓建议。从系统中取得所需数据并不困难,但数据需要进一步拼接,再去思考各个数据之间的因果联系。
通俗来理解,商业领域中的情报,是商业逻辑。
“情报支持的是对商业逻辑的理解,而数据支持的是对商业情报的处理能力。”郝欣诚认为必须先做情报挖掘,再做数据挖掘,如果情报没做好相当于对商业逻辑的理解没达标,指望着数据直接讲清商业逻辑,有些南辕北辙。
数据无法替代商业逻辑
大数据需要在量化数据的基础上,加上商业逻辑,才能帮助电商企业做全局性、系统性的决策。排除一系列不可控因素,把结论和实际情况进行剥离,在一个理想状态下的模型,只是数学专家给出的结论。
大数据的核心是融入商业逻辑。
在商业逻辑里,必须先懂市场,懂某个领域的消费者真正诉求的变化;其次要懂行业,包括行业的特征、要求和规则;最后才是懂企业运营,把多个支持模块资源有序地整合起来,从而共同创造价值。
在这些都具备的情况下,再用量化的数据适度辅佐决策,在商业逻辑的主导下,真正发挥量化数据的作用。
“缺乏这个商业逻辑之本,那量化数据就是天马行空的东西。”傅志勇把商业逻辑看成真正需要解决的难题,因行业不同、企业不同、类目不同、时机不同,商业逻辑都会有所变化,这是一种动态平衡的艺术和哲学。
网站分析在中国创始人宋星认为,数据不能代替商业逻辑,但是数据可以修正、调整商业逻辑。“一个决策的产生,要靠部分数据、部分经验、部分直觉。”宋星坦言,决策的事并非一句大数据便能解决。
这涉及数据分层。根据经验判断,越是偏宏观战略层面的数据,实用性越高,越是偏微观细小的数据,不确定性越高。因为宏观的决策很大,大到细小的影响起不了作用,而微观的决策恰恰相反。
例如,整个行业规模如何,市场增长力如何,本身是多样本的综合数据,每一个样本的影响都只占一部分。而一旦到微观层面,比如广告用的颜色、打折力度大小、满减的额度,某一项的数据会起决定作用。只是如今多数商家更相信测试法,并不相信数据研判。
“宏观层面多看看数据,微观层面多谈谈经验。”傅志勇认为这对电商企业有价值。
回归商业的本质,数据只不过是业务的副产物,业务系统好,一般情况下数据系统不会太差。如果本末倒置,数据系统好但业务系统差,结果会发现数据系统都没法输送原材料。
并不是说数据不重要,但请不要迷信,因为数据的不确定性所带来的风险,是多数企业无法承受的,生意人需要回归商业逻辑。
最后,借用一段被采访者的话来总结一下大数据:大数据是未成年人的性游戏,十七八岁的时候男女这点事还是挺有意思的,谁都不知道真正搞起来是什么样子的,所有人都在搞所以自己也要搞。大数据有的时候就是这样,讲不清楚真正的场景,自己又没有积累强大的数据,都是空谈。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21