百度大数据在预测领域的应用_数据分析师考试
大数据对于很多人来说并不陌生,这一说法常常在我们生活中也是屡见不鲜。但是大数据到底能在中国已经发展到什么阶段了呢?美国麻省理工的阿莱克斯•彭特兰(Alex Pentland)教授在百度The BIG Talk活动上认为,中国拥有百度这样的公司,政府部门的兴趣,使得中国的大数据发展状况良好。
彭特兰认为,深度学习技术比传统人工智能更加高级,能够通过数据的搜集和发掘帮助人类更好地做出决定。而百度精确预测世界杯,是一次深度学习(Deep Learning)技术运用的成功案例,百度的大数据产品将帮助人们在更多的预测领域做出更好的选择。
百度大数据在预测领域的应用已经涵盖了城市预测、景点预测、高考预测、疾病预测等多个领域。未来,百度还将推出房地产预测、票房预测、就业预测和金融预测等大数据预测产品。
在今年4月24日的百度技术开放日上,百度CEO李彦宏推出了百度大数据引擎。百度大数据引擎一共分三个部分。
开放云:百度的大规模分布式计算和超大规模存储云。过去的百度云主要面向开发者,大数据引擎的开放云则是面向有大数据存储和处理需求的“大开发者”。
百度的开放云拥有超过1.2万台的单集群,超过阿里飞天计划的5k集群。百度开放云还拥有CPU利用率高、弹性高、成本低等特点。百度是全球首家大规模商用ARM服务器的公司,而ARM架构的特征是能耗小和存储密度大,同时百度还是首家将GPU(图形处理器)应用在机器学习领域的公司,实现了能耗节省的目的。
数据工厂:开放云是基础设施和硬件能力,你可以把数据工厂理解为百度将海量数据组织起来的软件能力。就像数据库软件的位置一样。只不过数据工厂是被用作处理TB级甚至更大的数据。
百度数据工厂支持单词百TB异构数据查询,支持SQL-like以及更复杂的查询语句,支持各种查询业务场景。同时百度数据工厂还将承载对于TB级别大表的并发查询和扫描,大查询、低并发时每秒可达百GB,在业界已经是很领先的能力了。
百度大脑:有了大数据处理和存储的基础之后,还得有一套能够应用这些数据的算法。图灵奖获得者N.Wirth(沃斯)提出过“程序=数据结构+算法”的理论。如果说百度大数据引擎是一个程序,那么它的数据结构就是数据工厂+开放云,而算法则对应到百度大脑。
百度大脑将百度此前在人工智能方面的能力开放出来,主要是大规模机器学习能力和深度学习能力。此前它们被应用在语音、图像、文本识别,以及自然语言和语义理解方面,被应用在不少App,还通过百度Inside等平台开放给了智能硬件。现在这些能力将被用来对大数据进行智能化的分析、学习、处理、利用。百度深度神经网络拥有200亿个参数,是全球规模最大的,它拥有独立的深度学习研究院(IDL)和较早的布局,在人工智能上百度已经快了一步,现在贡献给业界表明了它要开放的决心。
彭特兰在评价百度大数据产品时说,百度已经逐渐找到了如何把纸上谈兵的数据转化为具有实际运用价值的产品的有效方式。
他还指出,百度是世界人口最多国家的第一大搜索引擎,因而在发展大数据领域具有非常好的天然优势,并且百度本身是一个强大的公司,拥有强大的技术和市场作为支撑,也正是基于此,他们成了这个行业的翘楚之一。
百度大数据也吸引了世界上最大的组织:联合国。近期联合国与百度宣布启动战略合作,共建大数据联合实验室,这也成为联合国开发计划署在全球范围内首次携手科技企业建立大数据实验室。据悉,联合国开发计划署与百度大数据联合实验室的目标是探索利用大数据解决全球性问题的创新模式。
近期,现阶段,实验室的研究重点是环保、健康两大领域,未来还将针对教育、灾害管理等人类发展的众多议题展开深入研究。
百度携手联合国开发计划署共建大数据联合实验室,意味着百度大数据已成为政府、国际组织、环保、医疗等各个领域真正的“火眼金睛”。不仅为可持续问题提供解决方案,更为建立持续跨界合作营造了全新机制。
就目前而言,大数据作为一种颠覆性的新型产业,产业估值仅为200亿美元左右,与产业的整体支出尚不成比例。
因此,尽管大数据时代已经到来,但大数据的黄金时代还尚未完全到来,至少在某些应用领域大数据还存在诸多不确定性,但是以百度的大数据联合实验室为转折点,一个大数据应用的全新模式已经开启,这也意味着一个大数据引领的新时代的来临。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22