
百度大数据在预测领域的应用_数据分析师考试
大数据对于很多人来说并不陌生,这一说法常常在我们生活中也是屡见不鲜。但是大数据到底能在中国已经发展到什么阶段了呢?美国麻省理工的阿莱克斯•彭特兰(Alex Pentland)教授在百度The BIG Talk活动上认为,中国拥有百度这样的公司,政府部门的兴趣,使得中国的大数据发展状况良好。
彭特兰认为,深度学习技术比传统人工智能更加高级,能够通过数据的搜集和发掘帮助人类更好地做出决定。而百度精确预测世界杯,是一次深度学习(Deep Learning)技术运用的成功案例,百度的大数据产品将帮助人们在更多的预测领域做出更好的选择。
百度大数据在预测领域的应用已经涵盖了城市预测、景点预测、高考预测、疾病预测等多个领域。未来,百度还将推出房地产预测、票房预测、就业预测和金融预测等大数据预测产品。
在今年4月24日的百度技术开放日上,百度CEO李彦宏推出了百度大数据引擎。百度大数据引擎一共分三个部分。
开放云:百度的大规模分布式计算和超大规模存储云。过去的百度云主要面向开发者,大数据引擎的开放云则是面向有大数据存储和处理需求的“大开发者”。
百度的开放云拥有超过1.2万台的单集群,超过阿里飞天计划的5k集群。百度开放云还拥有CPU利用率高、弹性高、成本低等特点。百度是全球首家大规模商用ARM服务器的公司,而ARM架构的特征是能耗小和存储密度大,同时百度还是首家将GPU(图形处理器)应用在机器学习领域的公司,实现了能耗节省的目的。
数据工厂:开放云是基础设施和硬件能力,你可以把数据工厂理解为百度将海量数据组织起来的软件能力。就像数据库软件的位置一样。只不过数据工厂是被用作处理TB级甚至更大的数据。
百度数据工厂支持单词百TB异构数据查询,支持SQL-like以及更复杂的查询语句,支持各种查询业务场景。同时百度数据工厂还将承载对于TB级别大表的并发查询和扫描,大查询、低并发时每秒可达百GB,在业界已经是很领先的能力了。
百度大脑:有了大数据处理和存储的基础之后,还得有一套能够应用这些数据的算法。图灵奖获得者N.Wirth(沃斯)提出过“程序=数据结构+算法”的理论。如果说百度大数据引擎是一个程序,那么它的数据结构就是数据工厂+开放云,而算法则对应到百度大脑。
百度大脑将百度此前在人工智能方面的能力开放出来,主要是大规模机器学习能力和深度学习能力。此前它们被应用在语音、图像、文本识别,以及自然语言和语义理解方面,被应用在不少App,还通过百度Inside等平台开放给了智能硬件。现在这些能力将被用来对大数据进行智能化的分析、学习、处理、利用。百度深度神经网络拥有200亿个参数,是全球规模最大的,它拥有独立的深度学习研究院(IDL)和较早的布局,在人工智能上百度已经快了一步,现在贡献给业界表明了它要开放的决心。
彭特兰在评价百度大数据产品时说,百度已经逐渐找到了如何把纸上谈兵的数据转化为具有实际运用价值的产品的有效方式。
他还指出,百度是世界人口最多国家的第一大搜索引擎,因而在发展大数据领域具有非常好的天然优势,并且百度本身是一个强大的公司,拥有强大的技术和市场作为支撑,也正是基于此,他们成了这个行业的翘楚之一。
百度大数据也吸引了世界上最大的组织:联合国。近期联合国与百度宣布启动战略合作,共建大数据联合实验室,这也成为联合国开发计划署在全球范围内首次携手科技企业建立大数据实验室。据悉,联合国开发计划署与百度大数据联合实验室的目标是探索利用大数据解决全球性问题的创新模式。
近期,现阶段,实验室的研究重点是环保、健康两大领域,未来还将针对教育、灾害管理等人类发展的众多议题展开深入研究。
百度携手联合国开发计划署共建大数据联合实验室,意味着百度大数据已成为政府、国际组织、环保、医疗等各个领域真正的“火眼金睛”。不仅为可持续问题提供解决方案,更为建立持续跨界合作营造了全新机制。
就目前而言,大数据作为一种颠覆性的新型产业,产业估值仅为200亿美元左右,与产业的整体支出尚不成比例。
因此,尽管大数据时代已经到来,但大数据的黄金时代还尚未完全到来,至少在某些应用领域大数据还存在诸多不确定性,但是以百度的大数据联合实验室为转折点,一个大数据应用的全新模式已经开启,这也意味着一个大数据引领的新时代的来临。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23