那些大数据不能告诉你的事儿_数据分析师培训
从Facebook火到Weibo的How-Old网站是Microsoft最新的小玩具。用户上载一张带有人像的照片,网站会猜测照片之中人物年 龄与性别的网站。How-Old起源其实是在2015微软软件开发大会上的一个“小意外”,在大会第二天的主题报告中,Microsoft在做面部识别 API的演示,起先开发者只是希望会有五十个人来测试,结果出乎意料地有超过三万五千人来测试,超过二十一万张照片被上载到网站上(其中两万九千张来自土 耳其)。更有意思的是,据网站流量监测公司Alexa显示,所有how-old访问者中,35.7%来自美国,而随居其后的便是来自中国访问者,占了访问 流量的13.3%。
许多人在社交网站上晒经how-old探测过的照片,而大部分网站所猜测的年龄都与实际不符,晒照的人大多是本着“看起来比实际年龄年轻”的心理在晒照。这虽然看起来好玩又无害的小程式,其实反映了机器、数据和“真我”这一哲学问题的关系。
让我们从十八世纪德国的投币体重计说起:放进一个便士,体重计就显示体重。有意思的是,这些体重计上面写着“he who weighs himself, lives well,he who lives well,knows himself well”。直接将对于体重的了解与对于自己的了解联系了起来:那些称重的人是了解自己的人。这些投币体重计内置各式各样的小游戏来吸引顾客,有的会给顾 客糖果(这一想法现在来看有点疯狂:为什么要给量体重的人更多卡路里?也从另一方面说明了当时人们并不会像现代人一样对摄入卡路里吹毛求疵),有的会算 命,还有的会在顾客站上体重计前猜测顾客的体重,如果猜测的体重与真实体重相符,所投硬币就会还给顾客。随后不久,这些投币体重计在各个公众场合被广泛应 用。一开始这些体重计的主要顾客是男性(因为当时女性的理想身形为“珠圆玉润”型)。但到1920年,随着节食等运动的兴起,用户主要变成女性。
从十八世纪放置于公共空间的投币体重计到现在几乎家家常见的家用大数据分析体重计,变化的不只是体重器摆设的地方,更是对于身体的自我管制(body policing),自我认知,社会审美,和对于“美”的定义的变化。
Body policing不得不让人联想到最新的Apple Watch和各种fit band健康手环,美国一保险公司本着节省成本的宗旨将这些手环发给客户,根据数据来判断健康风险,及时给客户提供健康建议。
这些由各种高科技产品和数码程序所产生的数据,成为了最客观的代表事实的数据-姑且将这些产品测量的准确性和拥有这些高科技产品的社会族群特征搁置一边-这些数据,特别是在有法律冲突时,被当作原始、真实、公正的数据来看待。这些数据被赋予了“事实”的代表力。
再回到how-old网站,虽然微软一直强调上载的图片数据不会被保存,但是看似好玩的、旨在博君一笑的小应用,是否也在某个时刻为自己加强了自 信?更不用说此应用对于性别的识别,”男性“和”女性“的特征在how-old网站上是被程式所定义的,这更加体现的性别的“人造性”-说到底,写 code的还是人。除去对于”男性“和”女性“的猜测,其他性别是否可以被猜测出来,还是how-old把不同性别了了划分为男和女两个类别?
总的来说,这些发展都体现了”被数据化的个体“(quantified self)这一现象,我们对于自己的认知很大程度上来自于各种由机器产生的数据:90和150的差距不仅仅是60斤而是”瘦“和”胖“,25和55不仅仅是30年的人生经验,而是”年轻“和”老去“的距离。
生活习惯,年轻年老,胖瘦美丑,这些事虽然都可以用数据衡量,但数据不能告诉我们人生的经历与故事,也许你是正在24小时坐着赶deadline的 论文党,或是因健康原因而不能节食减肥的美女帅哥,又或是心理年龄55的青年,这些机器都不能告诉你这些简单的藏在被机器所定义的“不运动”、“过度肥 胖”背后的原因。
随着日常生活中各种科技的普及,各种个人信息和身体的信息都被记录、保存、显示在仪器、程序代码和数据中心中。在享受科技为我们带来的生活便利的同 时, 我们更应该保持警惕。一是这些科技公司都是赢利性组织,因此数据被存放在哪里?多长时间?在什么情况下可以被哪种方式利用?二是这些数据也在不自觉中影响 着我们对自己的认知,这些数据化的表达,被当作科学的、准确的“事实”,而这些机器所测量的精准度有时常常被忽略。三是这些商品是否也借助放大了社会的不 平等?只有拥有Apple Watch和Fit Band才能拿到的数据,是否也从一个方面忽略了无法负担这些产品的社会阶层,否定了他们对于自己身体认知的权利和能力?总的来讲,科技从来都不是价值中 立(Value free)的,在设计科技产品的过程中,相应的社会价值在无形之中被写入、固定、再生产在这些产品中。甚至连桥梁这种看似功能明显而直接的科技,也可以在 无形之中变成增强种族歧视的工具:Robert Moses,纽约建筑大师,在Long Island所建造的将近两百个桥中,都对桥的高度和宽度采用了一定限制,而这些看似无害的建筑标准,却阻止了公车的通行,而正巧在1920年代,乘坐公 车的大部分是黑人和收入较低的社会族群,而能负担的起私家轿车的人们却可以畅行无阻,这些桥梁建设反而加深了社会的不平等和限制了这一族群的流动性。
所以,不必太纠结How-Old把你的年龄估计的过高或过低,因为科技永远无法代替我们对于自己的了解,也终将不会成为定义我们的工具。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22