大数据有大作用? 詹皇效率创新低照进总决赛
勒布朗-詹姆斯从来都不介意将自己和阿伦-艾弗森作比。
他穿上23号球衣是因为迈克尔-乔丹,“但我文身、我戴发带、我戴护臂,全都是因为AI。”詹姆斯说。
可平心而论,职业生涯4夺MVP、6入总决赛的勒布朗,早就在竞技成就上将艾弗森甩到了九霄云外。詹姆斯自己都没料到,在他高歌猛进将骑士队带进总决赛之时,竟会有人将他和艾弗森相提并论。ESPN的汤姆-哈伯斯特罗洋洋洒洒,写下了诸多证据以证明:2015年的詹姆斯,和2001年带队进总决赛时的艾弗森有着颇多相似。
哈伯斯特罗最直接而强烈的证据只有一条:自从1978年NBA季后赛以来,所有在季后赛球权使用率超过30%、且带队征战14场以上的超级巨星们,只有一个人的真实命中率跌破了50%大关,是的,这就是2015年的勒布朗(49.2%),而进攻效率与之最接近的球员,则便是14年前孤身犯险的艾弗森(50.2%)——如果你觉得进攻效率低一点并没有太大的关系,那么我们不妨再告诉你一个数据,一年前身披热火队战袍时,詹姆斯66.8%的真实命中率创下了该统计体系里古往今来的最高峰值。
勒布朗的进攻效率,在一夜间从珠穆朗玛峰顶,跌入了马里亚纳海沟之中。
篮球从不是一个人在战斗
因此而受影响的当然还有勒布朗的比赛效率值。得益于前ESPN数据专家约翰-霍林格不遗余力地推广,越来越多的人都认可了其所创的PER值评估体系,可作为PER值世界里曾经独一无二的宠儿,勒布朗在2015年的夏天也感受到了前所未有的凛冽寒意:詹姆斯的季后赛PER值从去夏的31.1直坠到本赛季的24.8,与2008-09赛季的巅峰值37.4相比更是不可同日而语,自从2009年首夺MVP奖杯以来,勒布朗的季后赛PER值从未像今天一样糟糕过。
个人攻击效率偏低、三分球效果奇差、大量持球导致失误数激增……这一系列相对恶性的连锁反应,都因勒布朗持球数量过多、个人攻击任务繁重而导致。2015年季后赛的勒布朗,以36.4%的球权使用率创下个人生涯纪录,这当然意味着他在尽可能地亲自扛起球队,却也标志着他无法再精雕细琢地面对每一次进攻,所以尽管篮板球数、助攻数都创下生涯季后赛新高,可詹姆斯的一系列高阶数据统计,都在这个夏天被冻在了冰窖之中。
为了证明自己的类比,哈伯斯特罗甚至还找到了2001年、2015年两个赛季东部赛区实力偏弱的证据:2001年,东部面对西部胜率仅仅46.0%,在过去20年中排名倒数第三;而2015年的东部则以46.9%的胜率排名倒数第五。
事实的确如此,勒布朗依靠着他在季后赛里漫长的行走,在过去的比赛中不断完成对前辈先哲们的超越,将自己的名字一次又一次地写进NBA季后赛的历史,可仅仅以他在过去一个多月的效率论,他并没有处在生涯中最杰出的时段。
骑士队在东部征程中打出了12胜2负的绝佳战绩,但在看似轻松的过程背后,因为队友凯文-乐福(微博) 、凯里-欧文相继受伤,詹姆斯在其中扮演的角色正变得愈发重要,从常规赛开始到过去的每一轮季后赛,詹姆斯直接攻击或助攻得到的分数比重不断上涨,目下已从首轮面对凯尔特人时的43.3%暴涨至东部决赛对阵老鹰时的53.6%。
能力越大,则责任越大;责任越大,则牺牲越多。这便是在30岁以后的第一次季后赛之旅里,勒布朗-詹姆斯的行走状态。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30能源企业在全球经济和环境保护双重压力下,正面临前所未有的挑战与机遇。数字化转型作为应对这些挑战的关键手段,正在深刻变革传 ...
2024-10-30近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度 ...
2024-10-30大数据分析师证书 针对不同知识,掌握程度的要求分为【领会】、【熟知】、【应用】三个级别,考生应按照不同知识要求进行学习。 ...
2024-10-30《Python数据分析极简入门》 附:Anaconda安装教程 注:分Windows系统下安装和MacOS系统安装 1. Windows系统下安装 第一步清华大 ...
2024-10-29拥抱数据分析的世界 - 成为一名数据分析工程师是一个充满挑战和机遇的职业选择。要成功地进入这个领域,你需要掌握一系列关键技 ...
2024-10-28降本增效:管理战略的关键 企业管理中的降本增效不仅是一项重要的战略举措,更是激发竞争力、提高盈利能力的关键。这一理念在当 ...
2024-10-28企业数字化是指利用数字技术和信息化手段,对企业的各个方面进行改造和优化,以提升生产效率、服务质量和市场竞争力的过程。实现 ...
2024-10-28数据科学专业毕业后,毕业生可以选择从事多种不同的岗位和领域。数据科学是一个快速发展且广泛应用的领域,毕业生在企业、学术界 ...
2024-10-28学习数据科学与大数据技术是当今职业发展中至关重要的一环。从基础到高级,以下是一些建议的课程路径: 基础课程: Python编程 ...
2024-10-28在信息技术和数据科学领域,数据架构师扮演着至关重要的角色。他们负责设计和管理企业中复杂的数据基础设施,以支持数据驱动的决 ...
2024-10-28进入21世纪以来,随着信息技术的迅猛发展,大数据已经成为全球最具影响力的技术之一,并成为企业数字化转型的核心驱动力。大数据 ...
2024-10-28随着科技的迅猛发展,数字化转型已成为现代企业保持竞争力和推动增长的关键战略之一。数字化不仅仅是技术的应用,它代表着一种全 ...
2024-10-28银行业正处于一个前所未有的数字化转型时期。在数字经济的驱动下,金融科技如大数据、人工智能、生物识别、物联网和云计算等技术 ...
2024-10-28数据分析可视化是一门艺术与科学相结合的技术,其主要目标是将复杂的数据变得更易于理解和分析。通过将数据以图表的形式呈现,我 ...
2024-10-28数据分析师在现代信息密集型的商业世界中扮演着至关重要的角色。他们通过专业的技能和敏锐的商业洞察力,帮助企业从大量数据中提 ...
2024-10-28