SPSS帮你绘制质量控制图_数据分析师
控制图(Control Chart)又称管理图,它是用来区分是由异常原因引起的波动,还是由过程固有的原因引起的正常波动的一种有效的工具。控制图通过科学的区分正常波动和异常波动,对工序过程的质量波动性进行控制,并通过及时调整消除异常波动,使过程处于受控状态。不仅如此,通过比较工序改进以后的控制图,还可以确认此过程的质量改进效果。因此,控制图在质量管理中有着广泛的应用。
控制图的种类很多,一般常按数据的性质分成计量值控制图和计数值控制图两大类。而最常用的是计量值控制图中的平均值-极差控制图,这两类控制图的特点与适用场合详见表1。
质量控制图的绘制
控制图有着重要的实践意义,因此在企业的生产过程、工序监控过程中有着广泛的应用。然而,令质量管理人员烦恼的是,虽然控制图的意义比较明显,但是控制图的绘制却要花费巨大的人力和时间。
现在,大多数企业都是通过人工来绘制控制图,首先通过计算器计算各种指标,然后再一步步地绘制控制图。在这个过程中,往往会出现计算错误或者误差过大等原因,使得最后的控制图达不到预期的效果,更为严重的是能使质量管理者产生错误的判断,做出错误的决策,从而产生较大的损失。也有的企业利用excel绘制控制图,从而提高其精确度,减少误差。然而,用excel绘制控制图的步骤比较繁杂,不容易掌握,容易在绘制过程中产生操作性失误,造成数据集的失真。
SPSS的图形工具非常强大,具有很强的统计分析功能。在质量数据管理中,经常要用到一些图形方法和工具,例如帕雷托图、直方图、散点图、控制图、序列图等,SPSS均可以有效地应用这些图形方法和工具来处理质量数据信息,这些功能集中在Graph菜单中。
点击“Group”下拉菜单中的“Control”项,将会弹出“Control Charts”对话框。从中选择所要绘制控制图的类型,“X-Bar,R,s”、“Individuals,Moving Range”、“p,np”、“c,u”分别表示“均值-极差控制图”、“单值-移动极差控制图”、“不合格品率控制图”和“缺陷数控制图”。“Data organization”则是选择以组为单位,还是以个体为单位进行分析。单击“define”按钮,则会弹出控制图各种参数确定的对话框,通过设置,就可以比较迅速地绘制出需要的控制图。
下面以一个实例介绍SPSS软件绘制质量控制图的过程。
实例介绍
例:某化学用品厂生产一种产品,每件产品需要反应试剂至少为1克,但是不能超过50克。为了控制生产过程,准备用控制图对生产过程进行监控,步骤如下:
第一步:建立数据文件。经确定,本例应用平均值—极差控制图,每5个观测值作为一组。
第二步:点击Graph菜单中的“control”项,弹出“Control Charts”对话框。选择其中的“X-Bar,R,s”表示均值-极差控制图。并选择数据组织方式为“Cases are units”表示观测量分类模式。
第三步:单击“Define”按钮,将弹出“X-Bar,R,s:Cases Are Units”对话框,其中,“Process Measurement”框用于选择工序变量,也就是待分析变量;“Subgroups Defined by”用于选择分组变量;“X-Bar and range”表示绘制平均值—极差控制图;“X-Bar and standard de?鄄viation”表示要绘制均值—标准差控制图。在此将变量“重量”选入“Process Measurement”;将变量“组号”选入“Subgroups Defined by”;选择“X-Bar and range”,即平均值—极差控制图。
第四步:单击“Options”按钮,打开“X-Bar,R,s:Options”对话框,其中,“Number of Sigmas”表示用于选择中心线以上或以下标准差的数值,在此根据质量管理的“3σ原则”,填入“3”; “Minimum subgroup size”为每组的最小样本容量,在此填入“5”,“Display subgroups defined by missing val?鄄ues”表示显示缺失值的组,在此不选择,点击“Continue”。“Statistics…”对话框中“Specification Limits”框用于设置上、下参考线,用以比较数据,在此可以分别填入“45”和“25”。
最后,点击“OK”,即可以绘出所要求的控制图,结果如图1和图2所示。
通过此控制图就可以看到均值、极差上下控制线以及平均值,还可以看到在25和45参考线以外的组号,并且通过分析,可以看出该控制图没有出现越出控制界限的点子,也未出现点子排列有缺陷的情况。因此,可以知道两张控制图无任何异常,说明生产过程是正常的,是受控的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-30