SPSS帮你绘制质量控制图_数据分析师
控制图(Control Chart)又称管理图,它是用来区分是由异常原因引起的波动,还是由过程固有的原因引起的正常波动的一种有效的工具。控制图通过科学的区分正常波动和异常波动,对工序过程的质量波动性进行控制,并通过及时调整消除异常波动,使过程处于受控状态。不仅如此,通过比较工序改进以后的控制图,还可以确认此过程的质量改进效果。因此,控制图在质量管理中有着广泛的应用。
控制图的种类很多,一般常按数据的性质分成计量值控制图和计数值控制图两大类。而最常用的是计量值控制图中的平均值-极差控制图,这两类控制图的特点与适用场合详见表1。
质量控制图的绘制
控制图有着重要的实践意义,因此在企业的生产过程、工序监控过程中有着广泛的应用。然而,令质量管理人员烦恼的是,虽然控制图的意义比较明显,但是控制图的绘制却要花费巨大的人力和时间。
现在,大多数企业都是通过人工来绘制控制图,首先通过计算器计算各种指标,然后再一步步地绘制控制图。在这个过程中,往往会出现计算错误或者误差过大等原因,使得最后的控制图达不到预期的效果,更为严重的是能使质量管理者产生错误的判断,做出错误的决策,从而产生较大的损失。也有的企业利用excel绘制控制图,从而提高其精确度,减少误差。然而,用excel绘制控制图的步骤比较繁杂,不容易掌握,容易在绘制过程中产生操作性失误,造成数据集的失真。
SPSS的图形工具非常强大,具有很强的统计分析功能。在质量数据管理中,经常要用到一些图形方法和工具,例如帕雷托图、直方图、散点图、控制图、序列图等,SPSS均可以有效地应用这些图形方法和工具来处理质量数据信息,这些功能集中在Graph菜单中。
点击“Group”下拉菜单中的“Control”项,将会弹出“Control Charts”对话框。从中选择所要绘制控制图的类型,“X-Bar,R,s”、“Individuals,Moving Range”、“p,np”、“c,u”分别表示“均值-极差控制图”、“单值-移动极差控制图”、“不合格品率控制图”和“缺陷数控制图”。“Data organization”则是选择以组为单位,还是以个体为单位进行分析。单击“define”按钮,则会弹出控制图各种参数确定的对话框,通过设置,就可以比较迅速地绘制出需要的控制图。
下面以一个实例介绍SPSS软件绘制质量控制图的过程。
实例介绍
例:某化学用品厂生产一种产品,每件产品需要反应试剂至少为1克,但是不能超过50克。为了控制生产过程,准备用控制图对生产过程进行监控,步骤如下:
第一步:建立数据文件。经确定,本例应用平均值—极差控制图,每5个观测值作为一组。
第二步:点击Graph菜单中的“control”项,弹出“Control Charts”对话框。选择其中的“X-Bar,R,s”表示均值-极差控制图。并选择数据组织方式为“Cases are units”表示观测量分类模式。
第三步:单击“Define”按钮,将弹出“X-Bar,R,s:Cases Are Units”对话框,其中,“Process Measurement”框用于选择工序变量,也就是待分析变量;“Subgroups Defined by”用于选择分组变量;“X-Bar and range”表示绘制平均值—极差控制图;“X-Bar and standard de?鄄viation”表示要绘制均值—标准差控制图。在此将变量“重量”选入“Process Measurement”;将变量“组号”选入“Subgroups Defined by”;选择“X-Bar and range”,即平均值—极差控制图。
第四步:单击“Options”按钮,打开“X-Bar,R,s:Options”对话框,其中,“Number of Sigmas”表示用于选择中心线以上或以下标准差的数值,在此根据质量管理的“3σ原则”,填入“3”; “Minimum subgroup size”为每组的最小样本容量,在此填入“5”,“Display subgroups defined by missing val?鄄ues”表示显示缺失值的组,在此不选择,点击“Continue”。“Statistics…”对话框中“Specification Limits”框用于设置上、下参考线,用以比较数据,在此可以分别填入“45”和“25”。
最后,点击“OK”,即可以绘出所要求的控制图,结果如图1和图2所示。
通过此控制图就可以看到均值、极差上下控制线以及平均值,还可以看到在25和45参考线以外的组号,并且通过分析,可以看出该控制图没有出现越出控制界限的点子,也未出现点子排列有缺陷的情况。因此,可以知道两张控制图无任何异常,说明生产过程是正常的,是受控的。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21