大数据时代下 CRM选型关键在于数据分析能力
大数据时代下 CRM选型关键在于数据分析能力大数据时代,客户关系管理数据越多越好?我们生活在一个数据爆炸的年代,移动互联网、云计算等现代信息技术的发展让数据量搭上腾飞的火箭,从TB(1024GB=1TB)级别跃升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别。一天之中,互联网产生的全部内容可以刻满1.68亿张DVD;发出的邮件有2940亿封之多(相当于美国两年的纸质信件数量);发出的社区帖子达200万个(相当于《时代》杂志770年的文字量)……身处大数据洪流,企业的客户关系管理也不能幸免,同样面临着来自四处八方的大量数据,如顾客对品牌的反应,股票趋势和市场预测等外部数据,客户沟通记录、客户购买产品、客户基本信息、客户售后服务等内部数据。在实际企业管理过程中,很多企业容易被大数据冲昏了头,认为客户关系管理掌握越多关于客户和产品的信息,就能够了解客户和产品更全面,就越能在激励的市场竞争中稳住阵脚。其实,在客户关系管理中,数据不是越多越好,数据有用、有价值才是关键。如何在这些大量的数据中甄选出有价值的数据呢?这是新时期所有企业进行客户关系管理首要解决的问题。选用嵌入BI的CRM才是全面的客户关系管理 信息化时代,很多企业进行客户关系管理都会选用CRM系统。传统的CRM系统一般都能够涵盖市场营销管理、客户信息管理、销售管理、售后服务管理等功能模块,管理链条从售前、售中,延伸到售后的客户关系,堪称360°全面客户自动化管理。然而,大数据时代,面对纷繁复杂的大量数据,这样的360°全面客户自动化管理却已经跟不上时代的步伐,新时期的CRM要求嵌入BI功能,能够对海量的数据进行分析处理,甄选出有用的数据,作为管理层科学决策的数据参考,彰显出数据的价值。因此,大数据时代,选用嵌入BI功能的CRM系统才称得上全面的客户关系管理。而且,由于数据量的庞大与复杂,嵌入的BI功能必须经受得住考验—数据处理能力要强大,能够应对呈几何级别增长的数据量;数据分析要实时,能够跟上不断变化着的数据;数据汇总要精准,能够真实反映客户和产品情况。可以说,大数据时代下,CRM选型的关键在于其数据分析能力,企业在进行CRM系统选型时要重点考察系统的数据分析能力。“采-存-剖-现”四部曲 CRM数据分析能力大考验大数据时代,企业需要一款嵌入BI功能的CRM系统,更为重要的是,嵌入的BI功能要强大。那么,CRM系统要具备怎样的数据分析能力才能应对源源不断产生的数据量呢?8thManage专家认为,可以从数据采集、数据存储、数据分析、数据展示等四个方面入手,只有在源头上采集到精准的数据、拥有全方位的数据库管理,以及实时精准快捷深入的数据分析和清晰的数据分析结果展示,才算是真正强大的CRM数据分析能力。
一、自动快速地采集精准的数据。大数据时代,虽然各种各样的数据层出不穷,但却并不是每一个数据都是有用的,事实上,有很大的一部分数据对于企业来说是没有参考意义的。嵌入BI功能的CRM系统必须支持在源头上高效率低成本得采集到精准的数据,轻轻松松地掌握有效的第一手资料。二、全方位数据库管理。大数据时代,数据的形式非常多样化,不仅有结构化的数据,还包含了大量的非结构化数据,如何规范化得存储这些不规则的数据对于企业来说也是一种挑战。能够对多样化和非结构化数据进行统一和规范化地存储和管理,也是CRM数据分析能力的体现。三、数据分析要实时精准快捷深入。海量的数据,关键在于通过分析整合,转换为对企业有价值的信息,数据处理是CRM系统应对大数据挑战必要的一个环节,它将直接支持管理层的科学决策。大数据时代,数据分析要实时精准快捷,并且要能够多层次深入地挖掘数据的内涵,这也是CRM数据分析能力最重要的一个体现。四、数据展示要清晰,一目了然。分析再准确,但若不能清晰地展示给管理层,科学决策也无从说起。数据展示是CRM数据分析能力考验最后一关,要支持多形式多维度全面地展示企业的客户和产品情况,管理层对企业客户和产品情况一目了然,决策起来自然更加科学合理。8thManage CRM是由高亚科技(广州)有限公司自主研发的客户关系管理系统,其嵌入式商业智能支持灵活全面的数据库管理,自动采集数据,分析和挖掘数据信息并且自动生成实时的分析报表,把多元化的非结构化的数据转换为真正有价值的信息,让企业的管理决策更准确,创造巨大的商业价值和效益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31