大数据时代如何做好反洗钱工作
当前数据比以往任何时候都更加根植于我们生活中的每一个角落。无论是国内还是国外,无论是学界、商界还是政界,都在谈论大数据、畅想大数据。大数据正带来深刻的思维变革、商业变革和管理变革。大数据时代,反洗钱工作也应顺势而为,合理利用多种来源的海量数据,进行更深入的挖掘,使预防、打击洗钱和恐怖组织犯罪的工作更精准。
目前的可疑交易的甄别需要金融机构反洗钱人员借助系统内各业务系统的数据,从客户的年龄、职业、行业、所处地区、交易对手、资金来源及去向等方面入手,对系统筛选出的数据进一步识别,从而把待甄别数据划分为正常和可疑两个类型。人工识别准确与否,依赖于客户在金融机构留存的基础信息是否全面、完整以及资金链条是否可追溯。虚假的信息和跨行交易、第三方支付平台造成的资金交易链断裂,都会给可疑交易甄别工作带来一定的困难。
基于大数据的反洗钱工作,除了使用金融机构、第三方支付平台之间资金流动数据外,还可以组合使用来自工商、税务、房管、海关、贸易、交通、质检、劳动人事、公安、法院等政府部门以及消费、娱乐、社交等商业活动及人民生活领域多个源头的数据。如通过工商、税务、司法等平台可查询对公客户是否存在证照过期、偷税、漏税、违法犯罪等形成的不良记录。涉及到个人客户,可以查询其是否有过不良信用记录等情况。通过这些途径,扩大了客户信息的来源,通过客户信息资料比对,可以使可疑交易的识别更加精准。
总之,大数据对反洗钱的影响是全面而深刻的,客户身份识别就像画像一样,各方面的信息积累越多,就越描越细,根据其以往轨迹可以分析其行为特征,从中找出异常交易,从而挖掘背后隐藏的违法行为。为此,笔者在基于实际工作中遇到的问题提出对利用大数据预防、打击洗钱和恐怖组织犯罪的工作建议。
为大数据开放共享建立制度保障。大数据的开放使用是世界趋势,大数据是治理现代化的一种技术路径,可以依靠海量的数据搜集和精准的数据分析增强决策的科学性,对政府管理有着重要意义,政府应有所作为。信息公开是政府利用大数据治国的一个必要条件,我国虽然制定了《政府信息公开条例》,但实施几年以来,政府各部门对信息的封锁依然如故。要想完全开放共享大数据,政府应加强制度上的建设,建立国家层面的信息法,为大数据开放共享建立相应的社会保障制度。通过立法框架和体制的修改,推动数据共享和接入。
建立国家级数据仓库和网络。数据合并需要技术支持,需要有专门部门对不同数据源进行整合,转化统一,形成可以实现检索、汇总等,而对只有建立国家级这样的数据仓库,才能为相关部门所用。要能够使数据仓库不断吸收最新的数据,并得到有效维护和充分利用,就需要建立能有效收集、维护和使用数据的网络。这同样需要政府有所作为:建立一个跨系统、跨平台、跨数据结构的政府综合信息处理网络平台。通过建立一张遍布全国、互相联系、顺畅流通的网,消除信息孤岛,使大数据流动起来,确保大数据能在各机构间得到有效的使用。
互通互联体系的建立需要一个漫长的过程。但金融机构可以在某一领域内进行尝试,如金融机构与第三方支付平台分享信息,共同构建甄别系统,加上互联网技术的运用,就能加大防止恐怖融资和网上洗钱力度,也可为大数据在反洗钱工作中的应用逐步积累经验。
建立保护隐私安全的法律法规。大数据时代的信息安全需要有明确的法律和惩罚措施,对大数据拥有者进行约束。有了针对大数据安全的法律法规,使用数据的部门、机构就需要对数据生产者可能造成的影响、对涉及个人数据再利用的行为进行正规评估,为其行为承担责任。作为金融机构,应严格执行客户信息保密制度。应用大数据对可疑交易进行识别,必然会掌握客户的海量信息。因此,客户信息保密制度的执行就显得尤为重要。一要选择业务素质和政治觉悟高的人员从事反洗钱甄别工作;二要与从业人员签定保密承诺书;三要加强对反洗钱从业人员保密意识的培养;四要对各类业务系统的进入实行严格的授权管理。
高度重视大数据人才的招募和培养。金融机构利用大数据反洗钱必须拥有专业的人才和完善的人才管理配套制度。因此,金融机构在建立自己的大数据反洗钱专业团队时,要以大数据平台建设为基础,积极招募和培养精通数据管理和分析的高级人才,打造专业、高效、灵活的大数据分析团队。而在管理方面,需要对现有管理架构、组织体系、资源配置和权力结构进行重组,让数据管理与分析成为反洗钱工作的重心。同时加强基层机构原有员工的培训力度,努力提高他们对洗钱犯罪行为方式的了解,注重对相关的新型反洗钱专业技能的培训。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31