上药信谊实现精准实时数据分析
企业发展越快、规模越大,管理模式的问题也日益表现突出。尤其,上海信谊目前已建立供应链系统、财务系统和人力资源等基础信息化系统,在系统中维护了运营所需的各种基础数据。但由于这些系统是随着业务发展逐步建设的,彼此之间信息孤岛现象较为严重,难以实现数据信息的共享、数据挖掘分析,及以统一界面展示管控要素。
为了实现集团业务集中管理辅助决策的信息化目标,上药信谊计划从原有的分散与集中管理相结合的模式,发展成集中管理新模式。在用友公司BQ团队的帮助下,上药信谊进一步规划了经营管理信息化平台全面集中的分步实施策略,为企业产品生态圈建设,抢抓发展机遇,突破信息化瓶颈,奠定了坚实的信息化基础。
▲分析首页
为了构建精准实时的数据分析系统,上药信谊和用友商业分析团队在现有ERP、项目管理系统及各类重要非结构化的业务数据应用之上,确立了BI系统的建设范围,共同规划了数据整合层、语义层、分析建模层、应用展现层四个层面的架构。以数据为着眼点,为支撑企业快速发展搭建起坚实后盾。
第一,数据整合层。是BA系统的数据来源,包括财务系统、各业务系统以及外部数据,这些数据通过数据信息管理工具,如ETL抽取到分析数据引擎AE,数据整合的主要作用是将分布在不同物理区域、不同系统中的数据首先通过规范编写的ETL程序或其它方式进行抽取,集中。
第二,语义层。商业分析平台,通过可视化的拖拽功能,将数据库中的指标数据建立分析模型,实现对数据的分析和监控。
第三,分析建模层。通过用友BQ以往的项目经验和研究,利用各种分析方法,建立了满足企业运营的采购、库存、销售、财务等分析模型,全面监控和分析运营情况,分析模型层主要是利用实时数据处理工具将抽取后的数据汇总到数据仓库中,并通过分析引擎将数据仓库中的数据根据业务归口不同进行归纳、汇总,如财务、营销、人力资源等,主要以报表和查询分析的方式将数据仓库中的数据展示出来。
第四,应用展现层。在展现层将不同特点的业务数据利用多种可视化手段展示出来,如智能查询、图形化报表、多维分析,自定义仪表盘等,是管理决策者和管理者观察企业的窗口。完整地展现了领导重点关注的决策支持系统的指标数据。决策支持系统的界面还可由业务人员根据不同的需求实现个性化定制,采用拖拉拽的操作方式,在页面上放置不同的指标内容,即可建立自己关注的指标分析界面。
▲
销售收入分析
考虑到企业高层领导日常业务繁忙,需要随时随地获悉各分支机构的第一手经营信息,用友BQ将其业务分析展现做到移动端,方便领导查阅。
上药信谊目前已实现了重要业务的数据整合与分析。在分析首页可展示全厂经营分析全貌,包含销售收入、利润、费用、应收周转、存货周转等各项总部考察指标完成情况,并可直观的发现数据问题;通过全产品查询,建立了一套根据产品编码便可查询产品价格、成本、预算、投保价格情况;从首页穿透可查看信谊总厂生产的全部产品的区域销售业绩,并能钻取挖掘当前及历史销售数据变化趋势,为企业自检销售目标完成率及合理优化产品结构提供了参考依据;通过存货周转分析,分析企业的存货周转率,以反映企业库存存货的周转速度,判断存货的流动性及存货资金占用量是否合理,促使企业在保证生产经营连续性的同时,提高资金的使用效率,增强企业的短期偿债能力;另外,可进行利润统计分析,费用对比分析、应收周转分析等。
用友BQ商业分析项目的建成使得上海信宜无论在数据管理的规范性,还是数据分析领域的先进性,与同行业竞争对手相比,又一次起到了领头羊、排头兵的作用,其顺利上线不仅标志着企业朝着打造数字化上药的目标又向前迈进了一步,同时还表明企业通过推进信息化建设工作实现集团化整体管理工作从优秀到卓越的提升。
新一代用友BQ商业分析整体解决方案,通过企业级数据平台的搭建,达到统一数据标准、共享信息资源的数据管理目标,为进一步进行数据分析及挖掘奠定良好的数据基础;同时,通过先进的数据可视化技术,根据现有数据进行ETL处理,把不同数据形式进行整合及展现,直观的将企业经营现状及未来发展趋势展现到企业管理者面前,为管理者的明智决策提供可靠的数据支持。
数据分析咨询请扫描二维码
需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20数据分析作为现代信息时代的支柱之一,已经成为各行业不可或缺的工具。无论是在商业、科研还是日常决策中,数据分析都扮演着至关 ...
2024-11-20数字化转型已成为当今商业世界的热点话题。它不仅代表着技术的提升,还涉及企业业务流程、组织结构和文化的深层次变革。理解数字 ...
2024-11-20