对于企业的业务人员,特别是数据科学家人群来说,Informatica的Intelligent Data Platform不仅是一个智能化的大数据预处理工具,而且可以像业务系统一样为企业带来直接的价值。
互联网企业通常会强调细节和微创新,把产品的某一项功能做到极致,借此牢牢吸引大量用户。但是企业级厂商则不同,它们更倾向于将产品平台化。平 台化的好处是可以把尽量多的功能集成在一起,方便部署与管理,而且可以借平台屏蔽底层架构的复杂性。软件厂商尤喜平台化,比如数据保护厂商有数据保护和统 一管理平台,大数据产品厂商有大数据处理通用平台等。
今年5月,独立企业数据集成软件提供商Informatica在一年一度的Informatica World上发布了Intelligent Data Platform。作为下一代数据平台,Intelligent Data Platform可以在正确的时间提供正确的数据,并通过铺设一条虚拟数据的高速公路,将人员、位置、设备以更加智能化的方式紧密联系在一起,为大数据应 用提供更好的支持。
提升智能化水平
Intelligent Data Platform包含三大核心:第一,Informatica Vibe虚拟数据机。Vibe是一种嵌入式的数据处理引擎,可以提供针对任何位置、格式或来源的数据的普遍的访问能力,且支持客户“一次映射,多次部 署”;第二,数据基础设施。数据基础设施层能够在任何规模的环境中系统、连续地交付干净、安全、互连的数据,从部门级到企业级,从事务数据到大数据,从内 部部署到云端皆可;第三,数据智能。Informatica独创的数据智能层将为客户重新定位数据基础设施层所创建的元数据,从而提高数据的可见性,改善 决策过程,并提升运营的智能化水平。
Intelligent Data Platform能够以正确的方式将正确的数据传递给相关的人员或发送到正确的位置。Informatica公司大中国区首席产品顾问但彬归纳了 Intelligent Data Platform的主要功能:Informatica可以在正确的时间提供最高质量的正确数据;Informatica能够将数据交付到正确的位置,包括 企业内部或云端;Informatica 可以将数据交付给正确的人员,无论是IT人员、分析师、数据管理员,还是业务用户;Informatica可以将数据交付给正确的设备,包括联网设备或自 动化决策系统;Informatica能以正确的方式交付数据,并确保数据安全可靠、经过授权且已获得保护。
Intelligent Data Platform在Informatica World 2014大会上一发布,即受到了与会的Informatica的用户的普遍欢迎。Informatica在大会上展示了一系列Intelligent Data Platform的应用案例,包括自助服务数据集成(Springbok 项目)、数据导向型安全管理(Secure@Source 项目)和360 度全方位业务实体(MDM 10)等。目前,Intelligent Data Platform还没有完全商品化。之所以在Informatica World 2014提前发布Intelligent Data Platform,Informatica是想在产品正式发布前先听听用户的反馈,然后根据用户的反馈进一步对Intelligent Data Platform进行完善,再择机发布商用化的版本。这种在产品正式发布前先与客户进行交流已经成了Informatica开发新产品的一个惯例。
为数据科学家服务
有业内人士指出,大数据已经发展到一个新的阶段,仍然按照传统商业智能(BI)的思路和方法解决大数据的问题已经不合时宜。传统BI采用包括数据采集、存储、处理、分析和呈现等环节在内的纵向数据处理方式,而新的大数据处理和利用方式则是分布式、扁平化的。文章来源:http://cda.pinggu.org/
传统的数据处理方式是模式化的,用户需要什么,厂商就提供什么样的解决方案,但这些解决方案通常是固定的、不能灵活扩展的。如果用户提出了新的 要求,想在原有系统中增添新功能或进行修改会十分麻烦。而Intelligent Data Platform可以解决这一问题,因为它是一个智能化的平台,可以为集中到“数据湖”中的各种类型的数据建立相关性,然后再提供给业务应用或通过接口与 分析工具衔接。
在进行大数据处理时,传统的数据库和分析技术还有用吗?但彬认为,传统技术与新技术之间不是谁对谁错的问题,而是要针对不同的应用选择适合的技 术。比如,银行常见的商业行为分析仍然可以采用数据库技术,而一些预测性的大数据挖掘项目则要采用新的大数据处理技术,呈现数据之间的关联性。
“Intelligent Data Platform给用户带来的最大改变是解放了IT人员。原来IT人员既要做业务也要搞技术。未来,我们希望IT人员可以把工作重心放在做开发和系统集成 上,而业务人员可以基于Intelligent Data Platform将业务描述得更清楚,并且可以自动生成一些规则。”但彬介绍说。
支撑Intelligent Data Platform的底层技术是Informatica的Vibe虚拟数据机,它也是所有Informatica产品的基础引擎。在这个引擎之 上,Informatica可以帮助客户进行数据集成,提升数据质量。Intelligent Data Platform是一个集成化的平台,从IT的角度讲,其实施肯定会存在一些挑战,但它确实能给企业的业务带来更多价值。“IT人员可以完成数据的抽取和 存储,然后提交数据用于分析。”但彬告诉记者,“但是企业的业务人员或数据科学家可以标记数据的质量、发现问题,从数据中发现更多有价值的东西。所以,我 们希望业务人员能借助Intelligent Data Platform更多地接触和利用数据,而不仅仅是IT人员。”
在推出Intelligent Data Platform的同时,Informatica还提出了“数据湖”的概念。所谓数据湖,就是将不同来源的数据存放在一起,但并不是将未经处理的数据简单 地堆放在一起,而是要将这些数据进行预先处理,建立数据之间的联系,这更有利于日后的大数据处理。
大数据是业务系统
传统的数据处理与分析都是IT人员的事,因此IT人员必须掌握丰富的数学知识和计算机技术。但是,大数据的最终目标是为企业业务和应用服务,而 IT人员通常不太了解业务,这就造成了大数据技术与应用的脱节。但彬表示,Intelligent Data Platform最理想的使用者是企业的业务人员或数据科学家,因为他们更了解业务需求,可以利用Intelligent Data Platform更好地解读大数据分析结果。
大数据处理系统是一个IT工具,还是业务系统呢?不同的定位决定了大数据处理系统的不同“命运”。“中国的很多客户通常将大数据处理系统当成一 个IT工具来使用。从IT运维的角度来看,IT人员只负责保证系统的正常运行、开关,虽然偶尔也会编写一些代码,但毕竟不能从业务的角度充分利用大数据处 理系统。在这种情况下,大数据处理系统只是一个IT支撑和保障系统,而不能直接给企业带来商业价值。”但彬介绍说,“如果将大数据处理系统当成一个业务系 统来对待,那么业务人员就可以利用这个平台更好地挖掘数据,给业务带来直接的价值。”
据记者了解,一个具有单一功能的大数据产品可能需要几十万元,而一套比较完善的大数据整体解决方案的价格可能达到上千万元。如果不能充分发挥大 数据产品应有的价值,那么对企业来说无疑是一种巨大的浪费。但彬表示:“如果企业只把大数据产品当成一个IT工具,那么可能不会持续地对产品进行升级,也 不会购买厂商的专业服务,一旦遇到解决不了的问题,就可能轻易放弃。”
Informatica曾经带国内某银行的技术人员去美国与Informatica的客户交流。让但彬吃惊的是,美国客户参与交流的全是公司的 业务人员,讲的全是业务系统如何运行。参与交流的中国客户全是技术人员,想了解的是美国企业如何构建一个大数据系统,而不太关心系统如何运行和如何给企业 带来价值。如此强烈的反差给中国的用户提了一个醒:第一,部署大数据应用应该以业务为中心和出发点;第二,企业最好自己主导大数据系统的部署与应用,因为 企业最了解自身的业务需求,可以更充分地利用大数据平台,提高数据分析的效率。
数据分析咨询请扫描二维码
数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21