
大数据时代 PB级数据怎么管
如何理解PB级数据?说到这个数据量级,人们首先会联想到CADAL项目(大学数字图书馆国际合作计划),该项目可以说是开启了大数据时代PB级数据管理的一个典型案例。他的成功运行搭建为众多方案商提供了借鉴。
PB级数据挑战多
据大学数字图书馆国际合作计划管理中心副主任黄晨介绍:“CADAL项目面临的三个大数据应用挑战是:首先是 PB级数据需要长期保留;其次,需要24小时不间断为高校师生服务;最后,多重业务需要共享资源。为此,我们在建设中,从系统稳定性、易用性、分级存储/信息生命周期管理、硬件升级更新与业务连续性、可用性、性能六个方面去考虑。
事实上,CADAL在开展二期项目的过程中,就明显感觉到了大数据上述的三大应用挑战。经过一期和二期工程建设,CADAL项目已经完成250多万册古籍和相关音视频资料的数字化,面向全国2000所高校开展服务,部分资源向公众开放。250多万册古籍和相关音视频资料加在一起,数据量已经达到600TB。三期工程将继续扩大资源建设,数据量将很快达到PB级。
为此,信息基础架构平台需要能够动态地支持多重工作流,满足不同的性能要求、不同的容量要求,并且随时能够改变;需要有效地管理共享资源,存储资源按需分配,同时通过配额管理功能,以提高利用率。
选择方案的关键点
据了解,250万册的纸质图书,需要1栋15层的大楼才能容纳。如图2所示。而采用现代的技术手段,只需要一个机柜,就足够应对250万册甚至更多图书的数字化影像。图所3所示。
图2某省图书馆介绍,建筑面积18073平方米,书库主体15层,可容纳250万册藏书
图3 这样一组EMC Isilon机柜可以保存几千万册数字化图书
面对上述挑战,据CADAL项目管理中心数据主管刘涛老师介绍说,CADAL项目管理中心从系统稳定性、易用性、分级存储/信息生命周期管理、硬件升级更新与业务连续性、可用性、性能六个方面进行综合考察。最终选择了EMC Isilon,总容量1PB的EMC Isilon大数据存储系统在CADAL项目管理中心部署完成,投入使用。
方案核心优势
这一方案的核心优势主要表现在两个方面:
一是支持文件、FTP等多种灵活的访问方式,简化了操作,提高了效率。
CADAL图书数字化的大致工作流程是:共建高校申报图书资源à项目管理委员会审定à共建高校负责数字化处理并将数字图书提交给管理中心à管理中心将数字图书发布到前端存储对外提供服务,同时备份多份份到后端存储。
刘老师经常要做的一件事情是:通过工作机将共建高校提交的数字图书从临时存储复制到前端和后台存储。由于各台服务器连接不同的光纤存储,需要把存储设备挂接到服务器才能操作,并且各服务器还应用不同的操作系统,数据需要走“临时存储à工作机服务器à服务器à后端存储”的路径。换成Isilon之后,数据只需要走“临时存储à前端服务器à后端Isilon存储”的路径,由于Isilon的吞吐量很大,并且没有文件系统和LUN管理的兼容问题,可以同时从多个临时存储往后端Isilon存储保存数据,且没有额外的速度损失,效率大大提高。以前,从共建高校接收数字图书较多时,后端的发布或备份服务器上的数据流量会比较大,会影响其它数据访问或应用,发布和备份会出现瓶颈;如果大量使用光纤存储,服务器端的成本也会增加。采用Isilon之后,硬件上带宽提高了,系统上跳过了操作系统层面的处理,这种现象有较大改观。
二是支持磁盘分级存储、节点分级存储和SSD固态硬盘加速,既保证了大容量,也保证了高性能。
CADAL的做法是,将活跃的数据保存在配有固态硬盘的高速Isilon节点上,其它数据保存在普通Isilon节点上。不同高校图书馆提供的数字图书分区保存,存储空间按需分配,并实行配额管理,提高存储利用率。
PB知识链接:
TechTarget自己的百科网站Whatis有关于PB大小的定义:“PB是数据存储容量的单位,它等于2的50次方个字节,或者在数值上大约等于1000个TB。”
那么一个TB呢?
“TB是一个计算机存储容量的单位,它等于2的40次方,或者接近一万亿个字节(即,一千千兆字节)。”
未来学家Raymond Kurzweil他的论文中对PB的定义进行延伸:人类功能记忆的容量预计在1.25个TB。这意味着,800个人类记忆才相当于1个PB。
如果这样还不够清楚,那么Adfonic的CTO Wes Biggs给出了下面更直接的计算:
假设手机播放MP3的编码速度为平均每分钟1MB,而1首歌曲的平均时长为4分钟,那么1PB歌曲可以连续播放2000年。
如果智能手机相机拍摄相片的平均大小为3MB,打印照片的平均大小为8.5英寸,那么总共1PB的照片的并排排列长度就达到48000英里——大约可以环绕地球2周。
1PB足够存储整个美国人口的DNA,而且还能再克隆2倍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07