
大数据时代 PB级数据怎么管
如何理解PB级数据?说到这个数据量级,人们首先会联想到CADAL项目(大学数字图书馆国际合作计划),该项目可以说是开启了大数据时代PB级数据管理的一个典型案例。他的成功运行搭建为众多方案商提供了借鉴。
PB级数据挑战多
据大学数字图书馆国际合作计划管理中心副主任黄晨介绍:“CADAL项目面临的三个大数据应用挑战是:首先是 PB级数据需要长期保留;其次,需要24小时不间断为高校师生服务;最后,多重业务需要共享资源。为此,我们在建设中,从系统稳定性、易用性、分级存储/信息生命周期管理、硬件升级更新与业务连续性、可用性、性能六个方面去考虑。
事实上,CADAL在开展二期项目的过程中,就明显感觉到了大数据上述的三大应用挑战。经过一期和二期工程建设,CADAL项目已经完成250多万册古籍和相关音视频资料的数字化,面向全国2000所高校开展服务,部分资源向公众开放。250多万册古籍和相关音视频资料加在一起,数据量已经达到600TB。三期工程将继续扩大资源建设,数据量将很快达到PB级。
为此,信息基础架构平台需要能够动态地支持多重工作流,满足不同的性能要求、不同的容量要求,并且随时能够改变;需要有效地管理共享资源,存储资源按需分配,同时通过配额管理功能,以提高利用率。
选择方案的关键点
据了解,250万册的纸质图书,需要1栋15层的大楼才能容纳。如图2所示。而采用现代的技术手段,只需要一个机柜,就足够应对250万册甚至更多图书的数字化影像。图所3所示。
图2某省图书馆介绍,建筑面积18073平方米,书库主体15层,可容纳250万册藏书
图3 这样一组EMC Isilon机柜可以保存几千万册数字化图书
面对上述挑战,据CADAL项目管理中心数据主管刘涛老师介绍说,CADAL项目管理中心从系统稳定性、易用性、分级存储/信息生命周期管理、硬件升级更新与业务连续性、可用性、性能六个方面进行综合考察。最终选择了EMC Isilon,总容量1PB的EMC Isilon大数据存储系统在CADAL项目管理中心部署完成,投入使用。
方案核心优势
这一方案的核心优势主要表现在两个方面:
一是支持文件、FTP等多种灵活的访问方式,简化了操作,提高了效率。
CADAL图书数字化的大致工作流程是:共建高校申报图书资源à项目管理委员会审定à共建高校负责数字化处理并将数字图书提交给管理中心à管理中心将数字图书发布到前端存储对外提供服务,同时备份多份份到后端存储。
刘老师经常要做的一件事情是:通过工作机将共建高校提交的数字图书从临时存储复制到前端和后台存储。由于各台服务器连接不同的光纤存储,需要把存储设备挂接到服务器才能操作,并且各服务器还应用不同的操作系统,数据需要走“临时存储à工作机服务器à服务器à后端存储”的路径。换成Isilon之后,数据只需要走“临时存储à前端服务器à后端Isilon存储”的路径,由于Isilon的吞吐量很大,并且没有文件系统和LUN管理的兼容问题,可以同时从多个临时存储往后端Isilon存储保存数据,且没有额外的速度损失,效率大大提高。以前,从共建高校接收数字图书较多时,后端的发布或备份服务器上的数据流量会比较大,会影响其它数据访问或应用,发布和备份会出现瓶颈;如果大量使用光纤存储,服务器端的成本也会增加。采用Isilon之后,硬件上带宽提高了,系统上跳过了操作系统层面的处理,这种现象有较大改观。
二是支持磁盘分级存储、节点分级存储和SSD固态硬盘加速,既保证了大容量,也保证了高性能。
CADAL的做法是,将活跃的数据保存在配有固态硬盘的高速Isilon节点上,其它数据保存在普通Isilon节点上。不同高校图书馆提供的数字图书分区保存,存储空间按需分配,并实行配额管理,提高存储利用率。
PB知识链接:
TechTarget自己的百科网站Whatis有关于PB大小的定义:“PB是数据存储容量的单位,它等于2的50次方个字节,或者在数值上大约等于1000个TB。”
那么一个TB呢?
“TB是一个计算机存储容量的单位,它等于2的40次方,或者接近一万亿个字节(即,一千千兆字节)。”
未来学家Raymond Kurzweil他的论文中对PB的定义进行延伸:人类功能记忆的容量预计在1.25个TB。这意味着,800个人类记忆才相当于1个PB。
如果这样还不够清楚,那么Adfonic的CTO Wes Biggs给出了下面更直接的计算:
假设手机播放MP3的编码速度为平均每分钟1MB,而1首歌曲的平均时长为4分钟,那么1PB歌曲可以连续播放2000年。
如果智能手机相机拍摄相片的平均大小为3MB,打印照片的平均大小为8.5英寸,那么总共1PB的照片的并排排列长度就达到48000英里——大约可以环绕地球2周。
1PB足够存储整个美国人口的DNA,而且还能再克隆2倍。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10