如何用SPSS和Clementine处理缺失值、离群值、极值
一、什么是预处理、预分析?
高质量数据是数据分析的前提和分析结论可靠性的保障。尽管在获取数据源时数据分析师格外谨慎,耗费大量的时间,但数据质量仍然需持续关注。不管是一手还是二手数据源,总是会存在一些质量问题。同时,为了满足数据分析、挖掘的实际需要,对噪声数据如何处理,是丢弃还是补充,或者重新计算新的数据变量,这些不是随意决定的,这就是数据预处理的一个过程,是在数据分析、挖掘开始前对数据源的审核和判断,是数据分析必不可少的一项。本文暂只简单讨论一下缺失值、异常值的处理。
二、如何发现数据质量问题,例如,如何发现缺失值?
1、SPSS是如何做到的?
(1)系统缺失值、空白值
每一个变量均有可能出现系统缺失或者空白,当数据量巨大时我们根本无法用眼睛看出是否有缺失,最明智的做法是把这项任务交给数据分析工具,比如Excel,可通过数据有效性、筛选、查找、计数等功能去实现,如果是SPSS数据源,可以通过描述统计之“频率”项来实现。
上图,五个变量中,家庭人均收入有效样本94,有6个无效样本,在spss数据区域显示为空白值。其他变量均没有缺失,对于这6个缺失值是留是踢需要谨慎。
(2)变量取值分布
这一项不容忽视,一般由于输入错误、数据本身或者其他原因造成。这里分分类变量和数值变量进行检查。
分类变量取值分布检查:
描述统计之“频率”项,可以对变量以及变量取值进行频次统计汇总,因此,此处仍然采用“频率”项。
上图,我们已经确认是否献血样本全部有效,但是不代表这个变量没有其他噪声。通过此变量取值分布的考察,我们可以发现是否献血有4个水平,分别为“0”“1”“No”“Yes”,但实际上,该变量的取值至于两个水平,“No”“Yes”,其余两个取值是错误操作导致的,这是系统缺失值,可以通过重新赋值进行处理。
数值变量取值分布检查:
数值变量取值分布不宜采用“频次”的统计,一般可通过直方图、含有正态检验的直方图来实现。
上图,数值变量的直方图,可以清楚的看到其分布情况。可以初步判断存在异常值。
(3)离群值、极值
在SPSS中可以通过“箱图”直观的看到异常值,探索分析项或者箱图功能可实现。
上图,为spss探索分析结果,还可以设置分组变量。可以直观的发现,家庭人均收入存在极值,编号为66,可以快速查找定位。
2、Clementine是怎么做到的?
Data Audit,数据审核节点示例:以下数据流看图不解释。
首先,建立以上数据流。最后一个为“数据审核”节点,右键选择并打开编辑:
上图,为clementine变量诊断结果,非常直观,图文并茂,而且一张图几乎说明了数据源各种质量问题。是否无偿献血,取值水平有4个,家庭人均收入最大值有异常,且明确显示有6个无效值。其他变量正常。
上图,是clementine变量诊断结果中的另外一张图表,我们可以发现家庭人均收入有一枚极值,六枚无效值。通过上述诊断,数据质量问题一目了然。
三、如何处理缺失值、离群值、极值?
1、SPSS实现方法
上图,为spss变量转换菜单下的重新编码为相同变量选项卡。可以轻松实现变量重新赋值。主要实现方法:重新编码为相同/不同变量、计算变量、缺失值分析模块,此处略,后续文章会涉及。
2、Clementine实现方法
(1)是否无偿献血 重新分类
我们已经清楚的知道,是否无偿献血变量在取值分布上存在问题。在clementine,需要用Reclassify节点进行重新分类,在变量诊断的第一种表格上选中是否无偿献血变量,点击左上角“生成”按钮,生成一个Reclassify节点。打开该节点,如上图所示,即可完成重新分类。
(2)无效值、空白值的处理
家庭人均收入变量存在6个无效值,我们建议保留这6个样本,希望通过决策树算法进行针对性的预测,从而为这6个无效值进行赋值。如上图所示进行操作。然后,选中该变量,点击左上角“生成”按钮,自动生成一个缺失值插补超级节点。
(3)离群值、极值的处理
家庭收入变量还存在一枚极值,对于该极值,我们采取剔除丢弃处理,在clementine变量诊断表格中,如上图操作,点击生成按钮,自动生成一个离群值和极值超级节点。
(4)以下为clementine的处理结果
我们将自动生成的两个超级节点,连接在数据流末端,再次进行数据审核,结果如上图所示,此时,我们可以看到,上述几个问题已经达到合理地解决。最终我们剔除了一个极值,对其他质量问题采取保守态度进行相应的处理。
上图,为整个过程的数据流图示。
四、总结
1、通过SPSS描述统计的相关过程,可以实现数据质量的探索分析并进行相应的预处理。
2、通过Clementine的Type节点、Filler节点、Reclassify节点、Data Audit等节点可以实现数据质量的探索,而且比SPSS更直观,更快捷。
3、相比而言,clementine在数据分析预处理方面更加优秀,结果可视化程度较高,直观易懂,而且处理流程简短精悍,虽然通过spss或者excel也可以完成这些工作,但我想,如果能合理选择有效驾驭,clementine是一个不错的选择,这不是炫耀或者奢侈,更效率更效果的工作才是最终目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“最近复购率一直在下降,我们的营销力度不小啊,为什么用户还是走了?” “是不是广告投放的用户质量不高?还是我们的产品问题 ...
2025-02-21以下文章来源于数有道 ,作者数据星爷 SQL查询是数据分析工作的基础,也是CDA数据分析师一级的核心考点,人工智能时代,AI能为 ...
2025-02-19在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31