如何用SPSS和Clementine处理缺失值、离群值、极值
一、什么是预处理、预分析?
高质量数据是数据分析的前提和分析结论可靠性的保障。尽管在获取数据源时数据分析师格外谨慎,耗费大量的时间,但数据质量仍然需持续关注。不管是一手还是二手数据源,总是会存在一些质量问题。同时,为了满足数据分析、挖掘的实际需要,对噪声数据如何处理,是丢弃还是补充,或者重新计算新的数据变量,这些不是随意决定的,这就是数据预处理的一个过程,是在数据分析、挖掘开始前对数据源的审核和判断,是数据分析必不可少的一项。本文暂只简单讨论一下缺失值、异常值的处理。
二、如何发现数据质量问题,例如,如何发现缺失值?
1、SPSS是如何做到的?
(1)系统缺失值、空白值
每一个变量均有可能出现系统缺失或者空白,当数据量巨大时我们根本无法用眼睛看出是否有缺失,最明智的做法是把这项任务交给数据分析工具,比如Excel,可通过数据有效性、筛选、查找、计数等功能去实现,如果是SPSS数据源,可以通过描述统计之“频率”项来实现。
上图,五个变量中,家庭人均收入有效样本94,有6个无效样本,在spss数据区域显示为空白值。其他变量均没有缺失,对于这6个缺失值是留是踢需要谨慎。
(2)变量取值分布
这一项不容忽视,一般由于输入错误、数据本身或者其他原因造成。这里分分类变量和数值变量进行检查。
分类变量取值分布检查:
描述统计之“频率”项,可以对变量以及变量取值进行频次统计汇总,因此,此处仍然采用“频率”项。
上图,我们已经确认是否献血样本全部有效,但是不代表这个变量没有其他噪声。通过此变量取值分布的考察,我们可以发现是否献血有4个水平,分别为“0”“1”“No”“Yes”,但实际上,该变量的取值至于两个水平,“No”“Yes”,其余两个取值是错误操作导致的,这是系统缺失值,可以通过重新赋值进行处理。
数值变量取值分布检查:
数值变量取值分布不宜采用“频次”的统计,一般可通过直方图、含有正态检验的直方图来实现。
上图,数值变量的直方图,可以清楚的看到其分布情况。可以初步判断存在异常值。
(3)离群值、极值
在SPSS中可以通过“箱图”直观的看到异常值,探索分析项或者箱图功能可实现。
上图,为spss探索分析结果,还可以设置分组变量。可以直观的发现,家庭人均收入存在极值,编号为66,可以快速查找定位。
2、Clementine是怎么做到的?
Data Audit,数据审核节点示例:以下数据流看图不解释。
首先,建立以上数据流。最后一个为“数据审核”节点,右键选择并打开编辑:
上图,为clementine变量诊断结果,非常直观,图文并茂,而且一张图几乎说明了数据源各种质量问题。是否无偿献血,取值水平有4个,家庭人均收入最大值有异常,且明确显示有6个无效值。其他变量正常。
上图,是clementine变量诊断结果中的另外一张图表,我们可以发现家庭人均收入有一枚极值,六枚无效值。通过上述诊断,数据质量问题一目了然。
三、如何处理缺失值、离群值、极值?
1、SPSS实现方法
上图,为spss变量转换菜单下的重新编码为相同变量选项卡。可以轻松实现变量重新赋值。主要实现方法:重新编码为相同/不同变量、计算变量、缺失值分析模块,此处略,后续文章会涉及。
2、Clementine实现方法
(1)是否无偿献血 重新分类
我们已经清楚的知道,是否无偿献血变量在取值分布上存在问题。在clementine,需要用Reclassify节点进行重新分类,在变量诊断的第一种表格上选中是否无偿献血变量,点击左上角“生成”按钮,生成一个Reclassify节点。打开该节点,如上图所示,即可完成重新分类。
(2)无效值、空白值的处理
家庭人均收入变量存在6个无效值,我们建议保留这6个样本,希望通过决策树算法进行针对性的预测,从而为这6个无效值进行赋值。如上图所示进行操作。然后,选中该变量,点击左上角“生成”按钮,自动生成一个缺失值插补超级节点。
(3)离群值、极值的处理
家庭收入变量还存在一枚极值,对于该极值,我们采取剔除丢弃处理,在clementine变量诊断表格中,如上图操作,点击生成按钮,自动生成一个离群值和极值超级节点。
(4)以下为clementine的处理结果
我们将自动生成的两个超级节点,连接在数据流末端,再次进行数据审核,结果如上图所示,此时,我们可以看到,上述几个问题已经达到合理地解决。最终我们剔除了一个极值,对其他质量问题采取保守态度进行相应的处理。
上图,为整个过程的数据流图示。
四、总结
1、通过SPSS描述统计的相关过程,可以实现数据质量的探索分析并进行相应的预处理。
2、通过Clementine的Type节点、Filler节点、Reclassify节点、Data Audit等节点可以实现数据质量的探索,而且比SPSS更直观,更快捷。
3、相比而言,clementine在数据分析预处理方面更加优秀,结果可视化程度较高,直观易懂,而且处理流程简短精悍,虽然通过spss或者excel也可以完成这些工作,但我想,如果能合理选择有效驾驭,clementine是一个不错的选择,这不是炫耀或者奢侈,更效率更效果的工作才是最终目的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29