如何对考试成绩进行数据分析(3)-数据分析师考试
在以前学院很少会对成绩统计进行分析,但是在这个大数据时代,我们必须要跟的上时代,以前考试从来没有对它进行过数据分析,同这些成绩没有一个正确的认识,下面我们就对如何对考试成绩进行数据分析呢。
教师应该知道的几种成绩统计分析方法一、成绩段统计表此方法常用,举例如下:表:某年级某学科某班学生考试成绩统计(本卷满分100分)
分数段 | 100~90 | 90~75 | 75~60 | 60~30 | 30以下 |
人数 | 9 | 16 | 14 | 8 | 4 |
百分率(%) | 17.6 | 31.4 | 27.5 | 15.7 | 7.8 |
一组 | 82 | 83 | 84 | 87 | 88 | 88 | 89 | 89 | 90 | 90 |
二组 | 53 | 73 | 85 | 88 | 89 | 92 | 95 | 96 | 99 | 100 |
五、差异系数标准差可以用来比较两组数据之间的离散程度的大小,但有两种情况这种比较毫无意义:一是两组数据的测量单位不同;二是两组数据的测量单位虽然相同,但它们的平均数相差较大。
这时可用差异系数(用CV表示)进行比较。公式为:CV=S / χ —×100%(式中S为标准差,χ—为平均分)例如:某一测验,一年级的平均分是50分,标准差是4.12;三年级的平均分是80分,标准差是6.04。问这两个年级的测验分数中哪一个离散程度大?由于平均数相差较大,不可以直接比较两个标准差,计算后得到一年级的差异系数是8.24%,三年级的差异系数是7.55%,显然一年级的测验分数离散程度大。
六、标准分(用符号“Z”表示)平均值与标准差用来考察与分析同质的统计资料是有价值的,但对于不同质的考试,如不同学科,或同一学科不同考试意义就不大,这时一般就要用标准分数作比较。公式为:
例:有某生三次数学考试的成绩分别为70、57、45,三次考试的班平均为70、55、42,标准差分别为8、4、5。如何看待该生的三次考试成绩的地位?如果仅从原始分数看,肯定认为第一次最好,其实不然,要计算出各次的标准分数,才能说明问题。
根据公式得出:Z1=(70-70)/8=0 Z2=(57-55)/4=0.5 Z3=(45-42)/5=0.6 这说明,原始分数为70,其位置正在平均线上,而原始分数为57的,其位置在平均线上0.5处,而原始分数为45的,其位置在平均线上0.6处。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22