京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何对考试成绩进行数据分析(3)-数据分析师考试
在以前学院很少会对成绩统计进行分析,但是在这个大数据时代,我们必须要跟的上时代,以前考试从来没有对它进行过数据分析,同这些成绩没有一个正确的认识,下面我们就对如何对考试成绩进行数据分析呢。
教师应该知道的几种成绩统计分析方法一、成绩段统计表此方法常用,举例如下:表:某年级某学科某班学生考试成绩统计(本卷满分100分)
| 分数段 | 100~90 | 90~75 | 75~60 | 60~30 | 30以下 |
| 人数 | 9 | 16 | 14 | 8 | 4 |
| 百分率(%) | 17.6 | 31.4 | 27.5 | 15.7 | 7.8 |
| 一组 | 82 | 83 | 84 | 87 | 88 | 88 | 89 | 89 | 90 | 90 |
| 二组 | 53 | 73 | 85 | 88 | 89 | 92 | 95 | 96 | 99 | 100 |
五、差异系数标准差可以用来比较两组数据之间的离散程度的大小,但有两种情况这种比较毫无意义:一是两组数据的测量单位不同;二是两组数据的测量单位虽然相同,但它们的平均数相差较大。
这时可用差异系数(用CV表示)进行比较。公式为:CV=S / χ —×100%(式中S为标准差,χ—为平均分)例如:某一测验,一年级的平均分是50分,标准差是4.12;三年级的平均分是80分,标准差是6.04。问这两个年级的测验分数中哪一个离散程度大?由于平均数相差较大,不可以直接比较两个标准差,计算后得到一年级的差异系数是8.24%,三年级的差异系数是7.55%,显然一年级的测验分数离散程度大。
六、标准分(用符号“Z”表示)平均值与标准差用来考察与分析同质的统计资料是有价值的,但对于不同质的考试,如不同学科,或同一学科不同考试意义就不大,这时一般就要用标准分数作比较。公式为:
例:有某生三次数学考试的成绩分别为70、57、45,三次考试的班平均为70、55、42,标准差分别为8、4、5。如何看待该生的三次考试成绩的地位?如果仅从原始分数看,肯定认为第一次最好,其实不然,要计算出各次的标准分数,才能说明问题。
根据公式得出:Z1=(70-70)/8=0 Z2=(57-55)/4=0.5 Z3=(45-42)/5=0.6 这说明,原始分数为70,其位置正在平均线上,而原始分数为57的,其位置在平均线上0.5处,而原始分数为45的,其位置在平均线上0.6处。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23