大数据的 “感性”应用_数据分析师考试
通过大数据分析、云计算等领先技术能力提供社交、移动等数据分析,跟踪并解析球迷心理,并与媒体紧密结合,将用户情绪、性格等属性可视化呈现,产出更易引发用户共鸣的体验。
大数据技术已经不是一个新鲜词儿,它的价值也已被广泛认可,借助海量数据的分析利用,能有效帮助企业实现市场动向预测,帮助有效支持市场活动各个阶段的不同商业行为决策,还能够实现追踪消费者行为,并对其心理甚至下一步行为实现相对精准的预测,产生更好的用户体验,满足目标消费者的多元化需求。
大数据在体育赛事中的应用很常见,在网球赛事中,一发成功率、一发得分率和Ace球是标志球员竞技水平的关键指标;发球速度、接发球成功率、上网成功率、得分点则突出体现了球员的打法特点。
上述都是来自大数据的直观应用,教练员和运动员通过每项赛事背后的技术统计来评价本场比赛发挥的好坏。而这些数据也将直接影响教练员对比赛的掌控。
在本届巴西世界杯,大数据应用又有了新模式——腾讯通过IBM的大数据分析、云计算等技术提供社交、移动等数据分析,跟踪并“解析”球迷心理,产出更易引发用户共鸣的优质内容,为用户打造全新的体育观赛体验。
6月12日,IBM与腾讯达成深度战略合作,成为腾讯体育社交媒体数据分析合作伙伴。
IBM的大数据技术,从赛事、球迷、文化三大维度,深度挖掘了来自世界杯球迷关注的120个热点关键词,抓取50万条主流社交媒体信息,包括球迷话题、球迷类型、个性分析等,并以此为基础,制作了“世界杯声量大比拼”、“世界杯飞鱼秀”、“算数”、“球迷画像”等专题栏目,通过数据分析,精准抓住球迷关注热点,并迅速输出报道内容。
球迷的另类体验
在本届世界杯中,腾讯通过IBM大数据实时分析,打造《世界杯球迷声量大比拼》栏目,让球迷即时看到64场比赛中对阵球队的当前支持率,以及个人喜爱球星的支持率,看到全球有多少人跟自己同欢喜共悲伤,满足球迷同理心,引发球迷共鸣。
IBM舆情系统实时分析社交媒体上球迷关注点,为“世界杯飞鱼秀”栏目提供大量球迷实时状态,分析球迷心态等数据盘点,呈现苍老师微博秀力挺德国、内衣模特大拼球技等网络话题,由两位脱口秀达人说出球迷们的心声,引发广大网友共鸣。期间栏目组还邀请了IBM数据工程师前去做客,展示IBM严肃的大数据系统如何支持网友娱乐生活的。
根据实时数据反馈,腾讯实时发布共32篇新闻报道,《德国更热梅西最火球王超高关注率远胜众星》、《荷阿大战遭疯狂吐槽罗本关注度不及梅西一半》等球迷角度深挖的信息,综合展示球赛期间球迷心理变化,引发球迷共鸣。单篇新闻最高阅读量达万次以上,95%均来自腾讯新闻客户端。
腾讯体育基于IBM大数据,在世界杯期间输出80期“算数”报告,深度剖析世界杯的角角落落,从球迷地域分布、性别比例,到历史上各大洲入围世界杯成功率等……这些基于大数据而呈现的报道内容,让球迷看到了一个直观的数字化的世界杯。
腾讯还策划了有趣的“球迷画像”,基于IBM大数据对用户的多维度分析,总结刻画了每位球星的球迷性格特征,对不同球星的粉丝类型加以区分和刻画,推出了不同球星的粉丝画像。例如,葡萄牙球星C罗的粉丝70%为女性,她们的个性关键词是“女王范”、“实际”、“有条理”和“欣赏美”。这样的球迷画像在腾讯的世界杯专区中定期推出,网友一致热捧,该画像成为鉴定自己是真球迷的另类标准。
合作共赢,火花没那么简单
独特视角的内容背后,是腾讯作为网络媒体在世界杯报道模式上的一次创新,也让我们看到了大数据实际应用的另一种模式。
记者采访了大数据提供方IBM品牌战略部高级经理杨磊,他表示“这是IBM第一次尝试在足球赛事中用大数据分析来探测球迷的反映,我们希望通过技术融合参与其中,与我们而言是一次露出,对腾讯,我们提供基于大数据分析的用户洞察,支持腾讯微用户提供即时感更强的内容”。IBM在1993年就开始进入体育赛事领域,赞助网球赛事,并提供比赛的IT技术支持。2005年,IBM通过SlamTracker追踪了网球四大满贯赛事8年来全部8128场比赛,每场比赛收集4100万个数据点,包括5500个分析模型。与媒体合作,用大数据技术分析探测球迷心理,并产出报道内容,这还是第一次。
此次与腾讯的深度合作,IBM首先看重的是腾讯庞大的用户基础与年轻化的用户属性,其次是腾讯在重大体育赛事报道中的运营能力、立体报道能力和PC端移动端双通道能力,这些优势将有效助力IBM大数据分析的开展和应用实现。
腾讯此次在世界杯报道中,也借大数据之力,大量并及时输出更贴合网友当下关注的热点内容,并发挥出网络全媒体平台的优势,将内容及时输送到各个媒体平台、移动终端,引发大量网友关注,并帮助品牌广告主实现了与用户的深度互动,实现了商业目的。
杨磊表示未来IBM将更多尝试B2B2C的传播模式,我们会看到更多大数据应用的场景和模式,开拓更多想象空间。
用科技改善赛事体验
目前媒体环境,社交、大数据、云等技术出现,B2B企业已经意识到独立消费者对企业的巨大影响,B2B企业的传播方式不再局限于一对一,IBM希望通过消费者的体验,运用B2B2C的方式让企业有更多的资讯通过终端触达消费者。
IBM其实一直致力于用科技来改善体育赛事的一些体验,在网球、高尔夫球赛事,我们在全球有很多年历史。但在足球,杨磊IBM品牌战略部高级经理这次是第一次尝试用大数据分析来探测球迷对这个赛事的反应。腾讯对于IBM是合适的合作伙伴,用户基数够大,用户属性年轻化,媒体平台全面,而且对于此次世界杯极其重视,并勇于尝试。这次合作对彼此都是一个很有趣的尝试和探索。让技术与赛事融合,通过腾讯IBM实现品牌露出,对于腾讯则多了一个内容提供方,并且开启了全新的报道模式,也为球迷带来了独特的观球体验。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22