大数据技术 凸显物联网价值_数据分析师培训
大数据时代已经来临。传感器、RFID等的大量应用,电脑、摄像机等设备和智能手机、平板电脑、可穿戴设备等移动终端的迅速普及,促使全球数字信息总量的急剧增长。物联网是大数据的重要来源,随着物联网在各行各业的推广应用,每秒钟物联网上都会产生海量数据。
数据是资源、财富。大数据分析已成为商业的关键元素,基于数据的分析、监控、信息服务日趋普遍。在各行各业中,数据驱动的企业越来越多,他们须实时吸收数据并对之进行分析,形成正确的判断和决策。大数据正成为IT行业全新的制高点,而基于应用和服务的物联网将推动大数据的更广泛运用。
由于物联网数据具有非结构化、碎片化、时空域等特性,需要新型的数据存储和处理技术。而大数据技术可支持物联网上海量数据的更深应用。物联网帮助收集来自感知层、传输层、平台层、应用层的众多数据,然后将这些海量数据传送到云计算平台进行分析加工。物联网产生的大数据处理过程可以归结为数据采集、数据存储和数据分析三个基本步骤。数据采集和存储是基本功能,而大数据时代真正的价值蕴含在数据分析中。物联网数据分析的挑战还在于将新的物联网数据和已有的数据库整合。
物联网上的大数据应用空间广阔,大数据和物联网结合充满无限可能。随着物联网、互联网、移动互联网、智能终端、大屏显示系统、云计算平台等的联合应用,物联网上的大数据可帮助人们建立智能监控模型、智能分析模型、智能决策模型等应用,深刻改变人们的生活。
智慧城市是物联网最大的应用领域,而智慧农业、智能家居、智慧物流、智能安防中的视频信息处理、智慧交通中的交通实时诱导、智慧环保中的环境监测等物联网领域都是大数据应用的“用武之地”。如:在环境监测方面,传感器借助物联网传递信息到互联网平台或移动互联网平台,实时监控环境变化。通过环境监控模型,对收集到的海量环境数据进行分析,发现环境指标变化的异常点,帮助环保部门提前预测某地环境的变化情况,对环境指标偏离正常指标值的,提前发出环境污染预警。而智能制造或“工业互联网”更是未来大数据和物联网美妙结合的经典案例。在行业应用方面,大数据和物联网的结合也会“擦出火花”。如:邮政服务可通过大数据和物联网转型为“邮政物联网”。邮政网络可配备低成本传感器,极大地增强邮政运营商收集有价值数据的能力。这个庞大的新数据来源可帮助邮政运营商提升运营能力,改善客户服务,创造新产品和服务,并为更有效率的决策提供支持。
物联网的价值在于其数据。物联网带来了突破性的技术进步,但管理大数据的问题也变得更加突出,需相关信息通信技术鼎力支撑。如:数据产生、捕捉、传递和分析,需快捷、稳定、可靠的广域网络,3G、4G、WiFi等无线通信技术应不断优化,以支持物联网及各传感器节点感知信息能力、传输能力、信息处理和存储能力等的全面提升。
物联网产生大数据,大数据助力物联网。由物联网引发的大数据潮流还将助推云计算等信息通信新技术的融合发展。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22