与零售业CIO探讨BI项目规划与数据分析_数据分析师培训
想从海量信息中挖掘出有用信息、精准营销?除了面向全体顾客实施地毯式轰炸的”商品营销“之外,更需要对商业智能体系重新反思,零售业需掌握先进的数据分析与高级决策支持能力,已经迫在眉睫。 国内零售业正在上演如同古罗马竞技的疯狂场面: 卖场扎堆经营,”千店一面“的雷同叫卖,”自杀性炸弹“的价格肉搏,盲目的”低性价比“: 你满100送100,我就满100送110,一家比一家送得狠,一家比一家送得绝; 誓要拼个你死我活,争个鱼死网破――似乎整个群体都身不由己地陷入了最后的疯狂。而虎视眈眈伺机而动的,是全球最大50家跨国零售财团中47家已经进入中国、并且马不停蹄地完成了在中国零售市场”高端布局“的” 帝国军团 帝国军团“在各中心城市的巷战让我们明白了: 只有实现营销创新的企业才能成为肉搏战中的胜利者。”商品营销与顾客营销双轮驱动“将逐渐成为零售行业主导趋势。除了DM、买赠、满省、搭售、抽奖、返券、减价、换购等面向全体顾客实施地毯式轰炸的”商品营销“之外,我们更需要在细分客户群体基础上实施精确制导的”顾客营销“。
构建商业智能(BI)体系、掌握先进的数据分析与高级决策支持能力,已经迫在眉睫。 面对着零售企业要把”数据坟墓“转化为”信息宝藏“的需求,我们选择了以CRM为切入点,推出的是分析型CRM,以帮助零售企业诊断目前在顾客管理方面的现状和问题,发现能够影响消费者的营销行为和提升经营业绩的有效方法,从而帮助企业经营决策者进行营销战略与策略的调整,指导营销策划和执行人员完成精准的”一对一“营销。当然,这个”一“的目标不局限于一个顾客,也可以是一个顾客群体。
下面,笔者从商业智能的项目规划和数据分析两个层面,谈谈一个探索者的经验教训与体会。 商业智能的项目规划 在规划层面值得关注的有两点: 一是数据仓库平台的选型,二是商业智能项目的阶段特征。
零售业的商业智能项目以系统上线为界,分为两个阶段: 前一个阶段的特征是共性化和厂商主导,如同购置商品房; 系统上线后应用阶段的特征是个性化和用户主导,如同对商品房是简易装修入住还是豪华装修,完全取决于房主在经济实力、生活品位、规划能力、专业素养、用途需求等各方面的差异。 最了解企业战略与经营需求的是用户自己。系统上线后,用户可以运用厂商提供的与数据仓库配套的工具包,随需应变地构建层出不穷的数据模型与分析主题――这是个只有起点没有终点的进程。在这个非开放环境中打造出来的、内生的数据分析与高级决策支持能力,才是企业的核心竞争力―这也是企业IT团队实现角色转换和价值升华的大好机遇。
数据分析的主题研发 商业智能、数据仓库是”舶来品“,可是追本溯源、寻求借鉴的过程远非”依葫芦画瓢“那么顺当。几乎在每个分析主题的模型构建与算法推理的过程中,从”三角幻图“的构成原理中,我都经历了以下三个思维阶段: 1.初次接触,随意观察,表面印象,没有深入探讨; 2.进入怀疑、批判阶段,疑团满腹,眼前是假象; 3.经过验证、推理、分析获得真知灼见。 第一个例子: 亦真亦幻的”客户价值矩阵分析“模型 几乎每个CRM软件提供商在与零售企业接触的时候,都会拿这个”客户价值矩阵分析图“(见图1)来说事 可是这么多年过去了,双方的交流始终停留在这张看起来很简单的模型图上。软件厂商们没能把这个模型的算法推理出来、设计到软件中去; 零售企业们也只能依旧沿用”消费额ABC分析法“来简单地切分会员价值群体。
本质是价值驱动,追求的效果是把企业有限的营销与服务资源准确地投入到最有回报价值的客户身上。所以,”客户价值矩阵分析“是整个CRA(客户关系分析)体系构建的基础,也是我们这次CRM产品研发要突破的第一道关口。 可是,笔者阅遍了所能搜索到的相关资料、用尽了所能想到的方法,也像此前的探索者那样没能从这张图上推导出合乎逻辑的算法来。 就在山穷水尽还苦苦求索的时候,笔者最终恍然大悟: 原来,行业中流行的这张矩阵图是用于交流的高度抽象概念图,而不是能用于推导算法的数学模型图――并不是有葫芦可依就能画出瓢来。
笔者从中得到启发,终于把客户价值矩阵的算法推导出来了。 第二个例子: 无葫芦可依的RFV三维分类模型 我们设计的RFV(最近,频率,消费者价值)分类模型(或称RFV检测仪)(见图2)从”停止采购时间“和”来店频率“两个维度,把”价值矩阵分析法“界定出的5个客户价值群体再次细分为125个不同的群体,商场可以针对不同的群体采取不同的营销方式。营销的主导思想是: 让左边(F值小、来店频率低)的多来商场,让右边(来店频率高)的提高消费金额,让下边(V值低)的提升消费能力,把后面(R值大)的挽救回来、激活起来。最有价值的、使用频率最高的用法是监测客户消费行为异动,及时采取应对措施,防范重要客户流失(即”客户流失预警“)。
用户还可以分别从R、F、V三个维度进行切片和切块观察,锁定感兴趣的目标群体; 具体到会员记录的时候,还可以用右键调阅该会员的”FM心电图“(每次购物的金额与间隔时间)。富基融通董事长颜艳春把RFV三维分类模型生动地形容成: ”零售医院的CT机“。
第三个例子: 现成的瓢―客户生命周期分析 在所有的数据分析模型中,”客户生命周期“的分析模型可能是最简单、最现成的。在理论上表述得最为完整的、集大成者应该是某着名咨询机构的这张图。(见图3) 对于零售企业来说,数据分析与运用的聚焦点在会员的”成长、成熟、衰退“这三个阶段所形成”抛物线“上。 可是把真实的会员消费数据导入分析模型后,生成的却不是BI厂商和咨询机构们所描绘的、和用户们所期盼的抛物线,而是杂乱无章的锯齿线。
是分析模型错了吗?在这样的图形上怎么能判定出会员正处于生命周期的哪个阶段? 有些资料对”商品生命周期“的阶段划分和描绘的抛物线,与”客户生命周期“同出一辙。可是商品与顾客这两个分析对象在本质属性上却存在着巨大的差异: 商品是受控对象,在有效的管理状态下形成抛物线状的销售曲线,是可信的。而顾客是行为自控者,并且商场对顾客目前还远远谈不上有效管理,所以消费行为呈现出无规则的锯齿线状态,正是对实际状态的客观写照,不是分析模型出了错。
那是理论权威们错了吗?也不是。毕竟这套理论不是在中国零售业目前的经营水准上构建起来的。富基融通的副总裁唐天明认为: 客户生命周期确实可以形成分析模型图中所描述的抛物线,但前提是要持续保持客户的”忠诚度“。在运用CRA的分析数据对会员按价值、特征、行为等多维度属性划分为不同的群体,实现个性化营销之后,会员的忠诚度和在商场的消费能力应该会随着商家”面向客户“的营销组织能力日益成熟而越来越高,然后相对持续平稳,呈现出与商品营销类似的受控状态。”从这个意义上讲,客户生命周期是抛物线我觉得是合理的,这也是商家需要追求的,或者说这是商家对实施CRM的最高期望。“副总裁唐天明说。
由此可见,对于零售行业来说,理论权威们所描绘的抛物线是”未来时“,是”共产主义阶段“; 而我们现在和CRM产品上线初期所看到的锯齿线是”过去时“,是”社会主义的初级阶段“。当锯齿线逐渐向抛物线演变的时候(这种演变将率先在”关键客户 “、”重要客户“群体中出现),我们的用户就成功了。 关于”客户生命周期管理“的用途,行业中的普遍印象是用于”客户流失预警“。对此,笔者人有不同的思考 ”客户流失预警“对时效性的要求比较高,而”客户生命周期管理“是相对宏观的管理工具,以”月“为数据。
等到从抛物线上观察出一两个月前客户有流失迹象的时候,很可能已经时过境迁、生米做成熟饭了,还预什么警? 如果真的要用于”客户流失预警“,那就不能像分析模型图那样,在抛物线上示意性地进行阶段划分,而是要对客户”成长期、成熟期、衰退期、流失期“的界定指标进行量化。这个难度是相当大的,也没有见到在零售业中有相关研究。 我们已经为”客户流失预警“配备了以”日“和”次“为数据颗粒的RFV三维分析模型和各维切片视图以及FM心电图等一整套从宏观到微观的”会员体检设备 “,可以及时监控和应对会员消费行为的异动――这远远不是在那根以”月“为颗粒度的”客户生命周期折线图“上所能够实现的。
尺有所短,寸有所长。客户生命周期折线图“可以与RFV检测仪和FM心电图配套使用: 当RFV检测仪发出某会员停止采购时间超过平均采购周期的预警信息时,是否要立即采取发送短信等联络措施呢?我们可以调阅该会员的”生命周期折线图“,观察此前是否存在过类似的现象,再做出适当的决定。 破除对”啤酒与尿布“的盲目迷信
谈到商业智能(BI),言必称购物篮分析; 谈到购物篮分析,言必称关联分析; 谈到关联分析,言必称”啤酒与尿布“。比较流行的故事是: ”沃尔玛利用NCR自动数据挖掘工具对一年多详细的原始交易数据进行分析和挖掘时发现: 与尿布一起购买最多的商品竟是啤酒。“于是”啤酒与尿布“就成了商业智能皇冠上的明珠。 运用先行者的研究成果把”购物篮分析“模块设计出来是没有什么难度了,但我们更需要关注的是: 这样设计出来的模块真正能给用户带来什么应用价值――价值目标不明确的产品研发,会让开发商与用户都深陷泥潭。有鉴于此,本人提出几点直觉上的质疑,希望能与大家在探讨的过程中释疑解惑。 ”啤酒与尿布“真的是被”购物篮分析“给挖掘出来的吗?
诸多版本中的这个故事更为接近真实场景: ”曾经有一段时间,沃尔玛在美国的店面经理发现一种现象: 每周啤酒与尿布的销量都会有一次同比攀升,后来沃尔玛运用BI技术发现,购买这两种产品的顾客几乎都是25~35岁、家有婴儿的男性,每次购买时间均在周末。沃尔玛在对相关数据分析后得出,这些人习惯晚上边看球赛、边喝啤酒,还要照顾的孩子,为了图省事就用一次性尿布。得到结果后,沃尔玛决定,把这两种商品集中摆在一起,结果销量有了显着增加。
“ 请注意三个关键点: ”有一段时间、店面经理发现、后来运用BI技术分析“。这与BI能自动挖掘出”啤酒与尿布“,可是相去甚远的两重境界。 既然”啤酒与尿布“是被”自动数据挖掘工具“给挖掘出来,那就应该有源源不断的精彩案例传颂于世。而”啤酒与尿布“已经走红多年了,怎么还是在唱独角戏?购物篮分析是高端应用,高端应用往往意味着高投入,高投入就必须有高回报,仅凭一个从海量的交易数据中挖掘出销售额占比微不足道的”啤酒与尿布“的案例,似乎很难打动追求投资回报的零售企业。 在一本书中是这样介绍的: ”研究‘啤酒与尿布’关联的方法就是购物篮分析,购物篮分析是沃尔玛秘而不宣的独门武器,购物篮分析可以帮助我们在门店的销售过程中找到具有关联关系的商品,并以此获得销售收益的增长。
“如果软件厂商真的用这几句话来跟客户交流,客户只需一句话就很可能让开发商趴下: ”请找找看牙膏和牙刷有没有关联关系?“ 虽然我们强调,关联挖掘算法的价值在于它的穷举性可以发现人们未曾关注到的类似”啤酒与尿布“这样潜在的关联规则。但这是否意味着,它可以拒绝人们用已知的关联规则来验证它的可信度? 资料上介绍的能自动挖掘”啤酒与尿布“关联关系的模型与算法在技术层面的科学性是毋庸置疑的。
问题可很能会出在: 购物小票上用来分析的牙膏和牙刷是两种商品(单品),而陈列在货架上的牙膏和牙刷却是两个颇有规模的商品群; 数十种品牌、系列、口味、功效、不同的包装规格、不同的消耗周期、不同的单次购买数量、越来越快的产品更新换代、消费者对新体验的追求、甚至在牙膏包装中赠送牙刷,这么多种因素的综合交错会大幅度地稀释牙膏牙刷在单品层面形成”同时并且重复购买的组合“的概率,对购物小票进行遍历分析后很有可能会得出反常识的结论: 牙膏、牙刷这两种商品之间没有关联性。 对自动挖掘”啤酒与尿布“这类潜在的”同时并且重复购买的商品组合“大可不必那么痴迷,我们其实可以用”购物篮分析“演绎出更为现实更有价值的应用。比如通过构建会员消费档案来挖掘出会员与商品、品牌、营销方式、供应商等等之间多维度的关联规律,帮助商场在数以百万计的茫茫顾客群中精确锁定个性化营销的目标。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
你是否被统计学复杂的理论和晦涩的公式劝退过?别担心,“山有木兮:统计学极简入门(Python)” 将为你一一化解这些难题。课程 ...
2025-03-31在电商、零售、甚至内容付费业务中,你真的了解你的客户吗? 有些客户下了一两次单就消失了,有些人每个月都回购,有些人曾经是 ...
2025-03-31在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的需求持续飙升。世界经济论坛发布的《未来就业报告》, ...
2025-03-28你有没有遇到过这样的情况?流量进来了,转化率却不高,辛辛苦苦拉来的用户,最后大部分都悄无声息地离开了,这时候漏斗分析就非 ...
2025-03-27TensorFlow Datasets(TFDS)是一个用于下载、管理和预处理机器学习数据集的库。它提供了易于使用的API,允许用户从现有集合中 ...
2025-03-26"不谋全局者,不足谋一域。"在数据驱动的商业时代,战略级数据分析能力已成为职场核心竞争力。《CDA二级教材:商业策略数据分析 ...
2025-03-26当你在某宝刷到【猜你喜欢】时,当抖音精准推来你的梦中情猫时,当美团外卖弹窗刚好是你想吃的火锅店…… 恭喜你,你正在被用户 ...
2025-03-26当面试官问起随机森林时,他到底在考察什么? ""请解释随机森林的原理""——这是数据分析岗位面试中的经典问题。但你可能不知道 ...
2025-03-25在数字化浪潮席卷的当下,数据俨然成为企业的命脉,贯穿于业务运作的各个环节。从线上到线下,从平台的交易数据,到门店的运营 ...
2025-03-25在互联网和移动应用领域,DAU(日活跃用户数)是一个耳熟能详的指标。无论是产品经理、运营,还是数据分析师,DAU都是衡量产品 ...
2025-03-24ABtest做的好,产品优化效果差不了!可见ABtest在评估优化策略的效果方面地位还是很高的,那么如何在业务中应用ABtest? 结合企业 ...
2025-03-21在企业数据分析中,指标体系是至关重要的工具。不仅帮助企业统一数据标准、提升数据质量,还能为业务决策提供有力支持。本文将围 ...
2025-03-20解锁数据分析师高薪密码,CDA 脱产就业班助你逆袭! 在数字化浪潮中,数据驱动决策已成为企业发展的核心竞争力,数据分析人才的 ...
2025-03-19在 MySQL 数据库中,查询一张表但是不包含某个字段可以通过以下两种方法实现:使用 SELECT 子句以明确指定想要的字段,或者使 ...
2025-03-17在当今数字化时代,数据成为企业发展的关键驱动力,而用户画像作为数据分析的重要成果,改变了企业理解用户、开展业务的方式。无 ...
2025-03-172025年是智能体(AI Agent)的元年,大模型和智能体的发展比较迅猛。感觉年初的deepseek刚火没多久,这几天Manus又成为媒体头条 ...
2025-03-14以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-13以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/go ...
2025-03-12以下的文章内容来源于柯家媛老师的专栏,如果您想阅读专栏《小白必备的数据思维课》,点击下方链接 https://edu.cda.cn/goods/sh ...
2025-03-11随着数字化转型的加速,企业积累了海量数据,如何从这些数据中挖掘有价值的信息,成为企业提升竞争力的关键。CDA认证考试体系应 ...
2025-03-10