运用大数据商业分析和数据科学为企业实现商业价值
商业分析的目标
商业分析的目标是利用大数据为所有职场人员做出迅捷、高质、高效的决策提供可规模化的解决方案-“创造商业价值的数据科学”。那么对于企业成长数据分析的重要性是什么呢?不论是企业做什么事情,一定要有自己最核心的业务平台,而对于企业来讲,最重要的事情是客户及业务的增长,当客户和业务积累到一定程度的时候企业会收集和获得足够的数据,对这些数据进行分析之后会帮助企业找到更多符合客户需求的增值业务及服务,这些业务又可以做到企业最核心的业务平台里面,从而帮助企业获得更多的客户,这样就会形成一个良性的循环,使企业更加健康快速的成长。60+的商业分析团队可以服务5000+的公司人员,它为产品团队、分析团队、运营团队、客服团队、工程团队和营销团队提供有效的数据分析,分析团队对于公司的整个业务来讲是最关键的一环。
分析团队的作用
分析将技术和业务有机的结合起来,其中分析师和数据科学家的任务是既要懂技术又要懂业务,用最好的数据为业务部门创造更多的商业价值,分析团队就像胶水,要能很好的与技术部门和业务部门进行沟通,把公司很好的粘合起来。
商业分析进化论
对于公司的管理人员或者高层来说,理解到商业分析并不是一步到位的过程是非常重要的,商业分析是有一个进化的过程,从数据到洞察。对于所有的分析团队来讲,首先要做的就是数据,把数据做好才能了解到发生了什么,在这一阶段对商业没有太大的回报;第二步是从数据中挖掘一些信息和知识来了解这些事情为什么会发生,这一阶段商业的回报有所增加;第三步是预测将来会发生什么,这一阶段商业回报会进一步提高;最后一步是公司所有的决策都是通过数据分析达成的,这一阶段的商业回报是最高的。
大数据本身的三个基本技术维度:3Vs
第一个V是容量(volume),随着技术的发展,数据的的容量越来越大。第二个V是速度(velocity),当数据容量越来越大的时候会影响数据处理的速度,这时有几种方法是可以利用的,一批批的数据存储、近实时数据存数和真正的实时数据存储。第三个是多样性(variety),从各种各样的渠道获得数据,不同的数据也有不同的数据。我们可以把它分为结构化的数据,这些数据可以用传统的关系性的数据库来存储;对于非结构化的数据,例如文本、图片等不可以用传统的数据库来存储;半结构化的数据,它有结构化数据的特点又能将非结构化的数据存储起来。对于一个公司来讲,把三个维度都做好几乎是不可能的,只有把至三个维度做一个很好的平衡,才能为企业创造价值。
对企业最重要的事情
如果企业是大海,那么分析团队就是海面上的冰山一角,但在大海的下面,分析团队实际上是一座巨大的冰山。分析团队所做出的巨大的贡献业务团队在表面上是看不到的,而且每一个团队都有自己的数据分析软件,对于企业最重要的是业绩,如何将整座冰山做成一块冰棍这是需要每一个团队做出巨大的努力的。
分析团队如何推动商业价值
EOI的分析架构,主要是Empower(助力)、Optimize(优化)、Innovate(创新)。对于分析团队来讲最核心的任务是帮助各个部门拿到他们想要的数据,协助他们运用数据。优化是分析团队的战略性任务,通过对数据的理解和运用帮助业务部门做到更好。创新是分析团队的风险任务,有风险的事情可能会带来很大的收益,也可能什么都得不到。
商业分析实例
1.助力,利用交互性的数据应用给职场人员建立数据通道。人才流动画板这种动态可视化的工具可以帮助挖掘商业洞察,可以帮助你发现公司在人才争夺中的战况。
2.优化,精准营销通过分析和倾向模型精准定位优化营销策略。用户倾向预测模型(B2C),识别正确分块市场,在最好的时间宣传最适合的产品。
3.创新,用商业分析的创新将营销战略带到新的高度。大客户兴趣指数(B2B),商业大客户对相关产品的兴趣度的倾向模型。决策者在B2B的商业模式里起着非常重要的作用,从个人兴趣指数整合到大客户的兴趣指数,较高的大客户兴趣指数带来更高的交易效率和成功率。
冰山下的真正秘密
技术是实现可规模化大数据分析的基石,从最初的网络API到对数据抽取转化加载,整合和集成实现数据的可视化,这一步业务部门才开始利用数据,第四步是数据的分析平台,这个平台实际上是内部的一个网站,让公司各个部门随时能拿到他们所需要的数据,最后的数据变的非常非常小,利用起来会特别简洁。
分析团队的理念
让数据工作从大到小,实现冰山到冰棍;让数据工作从繁到简,后台的代码是非常繁杂的,做出来的产品一定要是非常简单的;让数据工作从慢到快,只要用几秒钟就可以拿到数据提高工作效率。
商业分析发展的趋势
商业需求:数据分析被整合到各个业务领域的决策过程。技术平台:飞速发展的技术带来越来越多样的数据系统。人才需求:对分析师、数据科学家的要求越来越全面。从只做技术的幕后辅助人员到懂业务、数据、科技的策略合伙人。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析领域,Excel作为一种普及率极高且功能强大的工具,无疑为无数专业人士提供了便捷的解决方案。尽管Excel自带了丰富的功 ...
2025-01-17在这个瞬息万变的时代,许多人都在寻找能让他们脱颖而出的职业。而数据分析师,作为大数据和人工智能时代的热门职业,自然吸引了 ...
2025-01-14Python作为一门功能强大的编程语言,已经成为数据分析和可视化领域的重要工具。无论你是数据分析的新手,还是经验丰富的专业人士 ...
2025-01-10完全靠数据决策,真的靠谱吗? 最近几年,“数据驱动”成了商界最火的关键词之一,但靠数据就能走天下?其实不然!那些真正成功 ...
2025-01-09SparkSQL 结构化数据处理流程及原理是什么?Spark SQL 可以使用现有的Hive元存储、SerDes 和 UDF。它可以使用 JDBC/ODB ...
2025-01-09在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30