运营商如何用好大数据_数据分析师考试
据IDC预测,从2005年到2020年,全球数据量将从130EB增长到40ZB。大数据时代已经到来,如何更好地发挥数据资产的价值,对电信运营商来说是一个崭新的课题。
运营商大数据的价值主要体现在运营商内部应用和外部商业化。通过内部应用可以提高运营商的科学决策水平,实现决策从主观判断和经验判断为主转向数据驱动的科学决策;通过外部应用提升大数据价值,拓展运营商互联网经营思维,开创运营商收入蓝海,拓宽延展产业链,支撑决策,服务社会,惠及民生。
大数据的六大典型应用案例
公共交通:运营商利用成熟的GPS定位技术和高速的无线传输网络,为公交车、出租车公司提供车辆调度和管理服务,提高车辆运营效率和大众人群使用公共车辆的满意度。通过遍布全市的公交车和出租车行驶数据,分析挖掘形成整个城市的路面交通“实时路况”,为公共交通治理提供可靠的决策依据。通过公交车的固定路线行驶时间分析,帮助公共交通部门优化公交线路,合理配置公交车辆的投放数量,从而满足人民群众的公交出行需求。
公共教育:在幼儿教育方面,运营商利用视频传输、云服务分享能够实现幼儿、家长、老师三位一体的信息化服务。随着幼教信息化的普及和推广,借助大数据挖掘和分析,将不同年龄段的幼儿特征和偏好进行提炼,能够为教育局和相关教育机构提供有力参考。在中小学教育方面,运营商通过电子黑板、电子书包等形式,将丰富的教育资源通过云服务的方式传递到教育末梢。同时,借助大数据挖掘和分析,将教育资源的使用率进行评估,从而得出相应的推广范本,为教育机构遴选教材、试点新的教育手段提供参考。
医疗卫生:运营商利用遍布全国、通达乡镇的通信网络,将社区医院、乡村诊所这样的基层医疗服务机构连成网络,利用视频通信、云服务、传感设备等先进技术实现远程病情诊断、远程医疗咨询、共享病历等服务。利用大数据挖掘和分析为流行病防控、易感人群分析、季节多发性疾病预测提供有力的数据支持。
地理信息的商业价值:随着中国汽车市场的繁荣,“实时路况信息”不仅对公共交通治理有益,对普通的驾驶人员也有极高的参考价值。图商(高德地图、百度地图等)在提供免费地图导航软件的同时,对“实时路况”收取增值服务费。对于运营商而言,大数据挖掘分析结果,不仅可以为图商所用,还可以为保险公司售卖车险所用。
互联网金融带来的商业机会:越来越多的人使用“手机支付”,可通过分析此类用户的ARPU(月通信费)以及年龄结构、知识结构为企业细分目标市场。多数银行普遍采用的“信用卡移动受理”服务,是将银行的信用卡开卡业务移植到平板电脑上,方便银行业务人员随时随地向客户推荐业务、受理业务。运营商利用自身在通信网络和用户资源方面的市场优势,与医疗器械设备厂商及集成商建立长期的合作关系,捆绑业务、互惠互利,形成电信行业在医疗卫生行业的大数据应用,达到双赢共赢。
特殊人群服务:针对残障人士,运营商提供定制化的通信套餐,让他们足不出户也能享受高科技带来的信息盛宴。同时,结合位置定位、视频传输等通信技术,借助大数据挖掘和分析,为特殊人群服务,提供位置分布、使用偏好、消费能力的数据参考。
通过提供末梢消费者的行为分析和结合地理信息的数据分布,从而衍生出形式多样的商务模式。
运营商发展大数据面临哪些问题
国内电信运营商发展大数据既有优势也面临挑战,归结起来有如下几点。
1. 系统分散建设,难以实现资源共享。运营商虽然拥有众多的优质数据,但由于早期建设模式等原因造成数据虽多,但各类数据分散到多个平台中,同类数据又分布到不同的地域,彼此孤立,整体看来是一个个为数众多的“数据孤岛”。
2. 数据处理种类多,单一技术难以实现。各大数据系统数据模型不统一,只具备结构化数据处理能力,无法支持非结构化、半结构化数据处理,无法满足互联网业务发展要求。运营商缺少大规模的数据支撑平台,多数平台是为特定业务定制搭建的,并且同一类业务的支撑平台又分布到不同的地域,彼此孤立。因此,造成支撑平台处理能力有限,很难满足海量数据处理能力的要求。
3. 运营商掌握大量数据和数据制造者要求隐私权之间的矛盾,使得大数据应用变得困难。
4. 关于大数据应用的新商业运营模式尚不明朗。运营商掌握的数据很多,但是这些数据应该怎样应用、给谁用、应用收益是否可以抵消数据开发分析的成本,这一系列问题也让运营商非常困扰。
5.移动大数据挖掘的应用需要有法可依。目前,运营商的大数据挖掘仅是初步的,主要是基于日志数据而为,是面向运营商自身的服务,事实上运营商掌握的大数据内容很丰富,社会价值也很大,但目前运营商对这些数据挖掘的应用领域十分谨慎。对用户所产生的通话内容数据是禁止读取的,即便对日志数据的挖掘可以导出群体行为,但应屏蔽用户个体的隐私。总之,目前数据所有权限不清,要区别个人数据与隐私,前者强调归属于本人的可识别性,后者强调与公共事务无关的私密性。大数据的挖掘与利用需要有法可依,我国需要尽快制定“网络安全法”、“隐私保护法”与“信息公开法”,要在保护隐私的前提下鼓励对日志数据的挖掘,既要提倡数据共享又要防止数据被滥用。
电信运营商怎样发展大数据
1. 对数据进行集中,建立大数据应用基础。
运营商传统的业务发展模式多采用“分布式”,即同一个业务分布到不同的省分公司进行开展,这样虽然可以利用地缘优势,但造成数据大量分散、很多、很杂、无法聚类。数据集中是发展大数据需要解决的首要问题,对此可以参照互联网公司的方法,对数据进行聚类,然后从省分公司逐步上收,建立集中的数据中心,集中存储,为大数据平台所用。
2. 建设大平台,有效支撑大数据处理。
由于大数据属于海量数据的范畴,处理的数量级需要达到P级,因此,需要建立基于海量数据的高效的处理平台,而目前运营商的平台多是基于省分公司的地域级平台,处理能力有限,难以达到支撑大数据的水平。所以发展大数据需要对数据处理平台进行集中建设,可以按照业务类别进行统一设计、集中建设,也可以参考互联网公司的方法,例如阿里巴巴,集中开发基础大平台,实现多个业务共享基础数据,实现大平台的统一支撑。
3.优化管理流程和组织架构,保证大数据业务协调、稳定开展。
大数据对国内运营商尚属新事物,海量数据处理、大数据的应用、大数据平台的支撑等方面均需有专业的团队去研究、探索,可以参考国外电信运营商例如Version等建立专业的研发中心,集中推动业务发展。
4. 加强数据隐私保护,提高业务及系统的安全层级。
运营商对数据安全的保护可以从以下几方面入手。一是参考国外一些有效的方法和成熟的经验。个人信息匿名化:就是把被认为是“个人”的数据通过处理,使之无法还原到用户本人,从而规避隐私保护的法律风险。宏观统计数据商业化:数据的提供者和使用者均按照规范的商业模式进行操作,同时接受监管,以避免引起争议和法律风险。用户信息使用授权化:对用户信息的使用建立在用户拥有选择权和知情权的基础上,用户可以通过授权使用来享受服务,同时也可以拒绝等。二是通过技术手段防范泄露风险。例如,可以提升系统软硬件的安全等级,对重要的信息系统实施安全测试一票否决制,将网络漏洞带来的风险降低到最小。三是由于国家针对信息安全已经提升到立法的高度,运营商可以利用信息安全法律法规的威慑力,通过对内部以及其他相关人员的普法宣教,降低数据隐私泄露的风险。
总之,基于大数据信息服务成功最重要的关键点有两个,一是确保个人行为数据中敏感信息的脱敏;二是在供需信息匹配时,要遵循供方信息向求方发布,而不应该把求方信息发布给供方。这两点也是欧美国家当前开放大数据的过程中涉及个体数据时普遍采用的用户隐私保护方案。
数据分析咨询请扫描二维码
统计学基础 - 理解统计学的基本概念和方法是数据分析师必备的技能之一。统计学为他们提供了处理数据、进行推断和建模的基础。 数 ...
2024-11-25数据分析师在如今信息爆炸的时代扮演着至关重要的角色。他们不仅需要具备扎实的数据分析技能,还需要不断学习和适应不断发展的技 ...
2024-11-25数据分析师的工作职责涉及多个关键方面,从数据的获取到处理、分析再到可视化,旨在为企业的决策提供有力支持。让我们深入了解数 ...
2024-11-25数据分析师:洞察力量的引擎 数据分析师的兴起 数据分析师行业目前正处于快速发展阶段,市场需求持续增长,薪资水平也有所提升。 ...
2024-11-25数据收集与整理 - 从各种来源收集数据,清洗和整理以确保数据质量和可用性。 数据分析与建模 - 运用统计学方法和机器学习模型对 ...
2024-11-25数据分析是当今社会中不可或缺的一项技能,涵盖了广泛的工具和技术。其中,掌握各种数据处理函数对于数据分析师至关重要。本文将 ...
2024-11-25“大数据治理”是一个涵盖广泛的复杂概念,其核心在于确保大规模、多样化的数据资源能够被有效管理和利用。不仅涉及数据的采集、 ...
2024-11-25一、引言 背景介绍 随着信息技术的快速发展和互联网的普及,大数据已经成为现代社会的重要资产。大数据的兴起不仅推动了各行各业 ...
2024-11-25《Python数据分析极简入门》 第2节 7 Pandas分组聚合 分组聚合(group by)顾名思义就是分2步: 先分组:根据某列数据的值进行 ...
2024-11-25数据分析需要学习的内容非常广泛,涵盖了从理论知识到实际技能的多个方面。以下是数据分析所需学习的主要内容: 数学和统计学 ...
2024-11-24数据分析师需要具备一系列多方面的技能和能力,以应对复杂的数据分析任务和业务需求。以下是数据分析师所需的主要能力: 统计 ...
2024-11-24数据分析师需要学习的课程内容非常广泛,涵盖了从基础理论到实际应用的多个方面。以下是根据我搜索到的资料整理出的数据分析师需 ...
2024-11-24《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22