原来在线广告公司都是这样使用Spark处理流数据的
在Hadoop集群上部署Spark处理引擎,每天处理14TB的交易数据,这就是在线广告平台Altitude Digital最近的实践,它主要追踪用户的社交媒体数据。
AltitudeDigital首席技术官Manny Puentes透露,Spark部署会在今年四月中旬上线,公司为了成功在Hadoop系统中应用Spark Streaming模型,特地将计算节点从30扩展到50。
目前,Altitude Digital使用的是Hive数据仓库软件,这是Apache另一个开源技术,用于查询存储在集群中的数据,基于MapR Hadoop发行版。Puentes表示:“Hive是长时间运行的报表,一旦崩溃,要返回TB级别数据就得花费几个小时的时间。”在测试中,Spark Streaming查询速度是Hive的4到20倍,处理的数据集的规模和复杂度会对查询速度产生影响。
查询速度的提高对公司来讲意义重大,因为公司的分析应用程序,比如通过视频广告浏览数据优化广告位置,经常需要运行查询、等待结果、根据结果优化查询,然后再次运行。如果实践中能获得测试的性能,分析团队可能在一天之内得到复杂查询的答案,不需要再花上四五天的时间了。Puentes介绍到:“这对我们的业务来讲是很有意义的。”
流数据的多种应用方式
AltitudeDigital正在尝试集成来自多种不同的数据源的数据流,通过一定的算法,基于浏览cookie了解用户的行为。公司的另一个目标是给线上广告商更快的仪表盘访问。Puentes表示:“我们也希望能够实时反馈数据洞察力给广告商。”
Spark还只是Altitude Digital应用的技术之一,公司每天通过Spark Streaming处理交易数据的同时,也在使用Concurrent提供的开源Cascading软件来运行MapReduce批处理任务。Spark也支持批处理,而且生成处理速度是MapReduce的一百倍。但Puentes表示,他还是希望使用MapReduce容错技术确保任务完成。
Sharethrough是另一个采用了Spark Streaming的在线广告公司,它用来支持运行在AWS上的基于Cloudera的Hadoop集群。Sharethrough在2013年中期开始使用Databricks公司的Spark云部署,目前通过流处理模块每天运行500GB的互联网点击和广告可视数据。
Spark系统搭载机器学习应用程序,分析原生广告的效果。Sharethrough系统集成副总裁Rob Slifka表示,Hadoop集群部署两年以后,很明显,批导向的系统不能满足企业实时分析的需求。广告商和发行商不得不使用几小时以前的数据决定在哪里做广告,这就给广告优化带来了挑战。Slifka表示,因为Sharethrough平台支持的广告的本质决定的,这样做会很复杂。头条和触屏文本可以形成不同的组合。
数据流和点击率
这种头条-文本的方式更有效。在一次Sharethrough;进行的测试中,内部广告点击率从不足1%增长到7%,这在广告界是很大的进步。之所以采用Spark Streaming就是考虑到它能够快速识别那版广告最有效。Slifka表示:“如果你有十种组合,其中五种都不好,你一定想要快速地了解到哪五种不好。”
多亏了数据流技术,公司才能够用不同的网站用户测试不同的广告,然后快速分析结果,识别哪个广告最有效。Slifka表示:“我们从来不会选择一个单独的赢家,通过Spark Streaming,我们会采用一对组合,使其成为最好的广告。”
Russell Cardullo领导了Spark技术部署,他表示,流处理让性能检测更重要,也更有挑战性。“你需要认识到,这是要7*24小时不间断运行的。数据无时无刻不在产生,你需要及时掌握数据情况,而不是等发生问题了再去解决。”
他补充道,公司运行Spark Streaming,到目前只遇到一个处理问题,而且该问题不是由软件本身引发的,而是公司使用的为Spark提供数据的亚马逊Kinesis和RabbitMQ技术引发的。
Gartner分析师Nick Heudecker和McKnight咨询公司总裁William McKnight也指出了企业在融合大数据和流处理技术时面临的其他挑战。包括构建高可用的技术架构以应对数据处理工作负载,同时能够满足公司分析和业务处理的需求,使其能够利用流数据。Heudecker表示:“如果只加速业务流程的5%,其他95%都没有变,那就没有什么意义了。”
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21