P2P欺诈乱象不止 大数据防控能否作为_数据分析师考试
时下,无论是传统行业还是新兴业态,都力争在“互联网+”这股浪潮中找到自己的航向。互联网金融作为飞驰在前列的弄潮儿,风生水起的同时,风险也在逐渐累积,在传统风控的基础上,利用大数据进行风险评级和风险控制已成为业内的共同趋势。
近日,多家P2P平台宣布接入大数据反欺诈服务供应商同盾科技的SAAS反欺诈数据库,一时间,大数据反欺诈成为P2P平台风控水平新的提升点。据相关人士介绍,大数据反欺诈的实质是通过对大数据的采集和分析,找出欺诈者留下的蛛丝马迹,从而预防欺诈行为的发生。其现实意义在于提升坏人的欺诈成本,在欺诈行为发生之前就将其制止,进而净化诚信体系。
业内专家表示,互联网的虚拟性,让线上造假的成本和难度远远低于线下。随着诈骗团伙专业性的增强,越来越多的高科技被运用到线上进行诈骗,更加大了P2P平台甄别用户信息的难度,提高平台对网络欺诈防范能力已经刻不容缓。
“虚假借款人是P2P平台主要风险主体之一,而网络反欺诈简单说来就是为了过滤掉这些虚假借款人。这个群体的突出特点就是同时在多个借款平台上发布借款申请,通过提供虚假信息进行诈骗。”一位受访的业内人士说。
据了解,目前已有多家P2P平台引入了反欺诈技术,这在我国征信体系尚不完善的互联网金融环境中具有重要意义。以P2P平台邦帮堂为例,引入大数据反欺诈模型之后,邦帮堂风控系统将与同盾SAAS反欺诈数据库直接进行对接,同盾科技提供丰富的反欺诈资源,帮助邦帮堂在信用评估初期有效地判断借款申请是否属于诈骗,过滤掉不安全信息,帮助其提高审贷效率,大幅降低平台前期的硬件和实施成本。
邦帮堂副总裁王秀萍认为,互联网金融蓬勃兴起的同时,通过向P2P平台提供虚假信息,骗取钱财的金融诈骗犯罪也日益猖獗,给平台和投资人造成巨大经济损失。随着互联网金融市场规模的增长,互联网金融诈骗必将有增无减。所以通过内外兼修,加强平台风控系统建设,提高自身风控实力,是每一个负责任的P2P平台都必须用心去做的“功课”。需要注意的是,任何单一技术都是辅助工具,P2P平台的风控建设还是需要形成严密的体系,尽力朝着“无缝隙”方向努力。
除了P2P领域,电商、银行、支付等行业同样需要反诈骗。业内人士认为,未来,反欺诈领域或将实现跨行业联防联控。可以通过整合包含互联网金融、电商、银行、支付等众多行业黑名单数据,配合行业领先的数据与行为收集技术,经过多样化的机器学习模型、大数据关联分析和指标计算,以云服务的方式为各行业提供网络反欺诈保护,从而建立适用于全局的关联欺诈信息库,提供更准确更全面的反欺诈服务。
P2P网贷行业发展至今,各平台发展良莠不齐,风控能力也长短不一。随着大资本大集团的纷纷介入,以及大数据的深度融合,行业竞争将不断加剧,洗牌速度和程度也将更快,更彻底。在风控安全成为互联网金融生命线的当下,谁拥有了“最强风控”,谁就等于拥有了抵御行业竞争与洗牌的最强后盾。
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 6 Pandas合并连接 在pandas中,有多种方法可以合并和拼接数据。常见的方法包括append()、conc ...
2024-11-24《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21