R语言的一个小范例:数值模拟和绘图_数据分析师培训
下午上课,要给经济工程专业的本科生简要介绍一下用于统计分析和绘图的R语言。考虑到他们所在的年级并没有系统的学完统计学和计量经济学,打算不从回归分析入手,先教他们对R的基本操作有个了解。写了如下这段代码,准备课上带同学们做一下。顺便发到网上,供大家参考。
背景:
假定是一个由
决定的量,满足关系
问在
的取值空间内,
值的走势如何,以及最大值出现在什么地方,并绘图说明。
talk is cheap. show me the code (废话少说,放码过来)
一点一点写,并适当做说明
qiu <- function(alpha){(alpha / (1-alpha))^{-alpha}}
这段代码的意思是,定义一个名为qiu的function,输入值alpha之后,会自动求得对应的值。比如
> qiu(0.67)
[1] 0.622206
现在我们来搞alpha。
x <- seq(0.001,0.99, by=0.001)
定义一个数组x,取值从0.01开始,每次增加0.001单位,直到0.999。然后看看x这个数组的情况吧
x
length(x)
结果就不贴出来了。现在,把x的值交给qiu来处理,生成的一系列值,我们定义为y。
y <- qiu(x)
画个草图来看看分布情况如何
plot(y~x)
显然,随着x从0到1, y并不是单调变化的:先增大,后减小。那么,y的最高值是多少?对应的x值是多大?
max(y)
x[which.max(y)]
第一行告诉你y的最大值1.3211
第二行的which.max(y)告诉你当y值最大时,所对应的编号是218。把218带入x中,找到对应的x的值:x[218]=0.218
schx=c(x[which.max(y)])
schy=c(max(y))
分别将y值最大时的x和y值,定义为schx和schy,供下文使用。
重新画张图,前面那张太丑了
dev.off()
plot(y~x, ylim=c(0,1.5), xlim=c(0,1), type="l", ylab=expression(beta), xlab=expression(alpha))
第一行dev.off()告诉R的绘图程序,关闭此前的图。第二行的ylim和xlim定义x和y轴的取值范围。type是告诉plot程序,散点图以line的形式呈现。ylab和xlab是x和y轴的名称:由于我们需要使用希腊字母,因此需要使用expression(alpha)和expression(beta)来打出与
。
比原来那张图看着帅一些了是吧。继续调整。
par(new=TRUE)
plot(max(y)~x[which.max(y)], pch=2, lty=3, col="red",ylim=c(0,1.5), xlim=c(0,1), ylab="", xlab="")
第一行告诉绘图程序,我下面要在原有那张图的基础上,继续添加内容,不要覆盖原图。
第二行中,把y最大值时的点标出来,pch表示这个点的形状(1是空心圆,2是空心三角,等等,你们自己试试看从1到20吧)。col="red",将这个点画成红色。ylab和xlab设为空,ylim和xlim和上文的值相同,使得两张图x轴、y轴重合。
差不多行了。如果你想继续和我一样骚包一点的话,跟我向下继续设置。
text(schx, schy-0.2, substitute(paste("(", xx ,", ", yy, ")"), list(xx=schx,yy=schy)))
这行代码的作用是,在途中加入一段文字。语法text(a,b,c)的意思是,a代表横坐标的位置,b代表纵坐标的位置,c代表所需要加入的语言。a和b加在一起,告诉plot()需要把一段文字c放在(a,b)这个地方。
c需要做进一步的说明。"(", 以及 ")", 表示这其中是有纯文字部分的,plot()直接把它们打出来即可(注意逗号是要保留的)。加在两个小括号中间的是xx和yy,这是两个值。
substitute(paste(),list()):
substitute()中包括两部分,一部分是paste(),一部分是list()。paste告诉plot()要加入这段东西了,其中包括两个待赋值的xx和yy。list()为它们分别赋值。
看看效果吧。
看起来还可以。要是能把 这个式子也写上去就更完美了。
text(0.4, 0.5,
substitute(
paste(beta == (frac(alpha, 1-alpha))^{-alpha},
",",
"0<", alpha, "<1")
)
)
收工。这张图看起来还是有些难看。。。。不过基本信息都已经有了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在当今这个数据驱动的时代,几乎每一个业务决策都离不开对数据的深入分析。而其中,指标波动归因分析更是至关重要的一环。无论是 ...
2025-02-18当数据开始说谎:那些年我们交过的学费 你有没有经历过这样的场景?熬了三个通宵做的数据分析报告,在会议上被老板一句"这数据靠 ...
2025-02-17数据分析作为一门跨学科领域,融合了统计学、编程、业务理解和可视化技术。无论是初学者还是有一定经验的从业者,系统化的学习路 ...
2025-02-17挖掘用户价值本质是让企业从‘赚今天的钱’升级为‘赚未来的钱’,同时让用户从‘被推销’变为‘被满足’。询问deepseek关于挖 ...
2025-02-17近来deepseek爆火,看看deepseek能否帮我们快速实现数据看板实时更新。 可以看出这对不知道怎么动手的小白来说是相当友好的, ...
2025-02-14一秒精通 Deepseek,不用找教程,不用买资料,更不用报一堆垃圾课程,所有这么去做的,都是舍近求远,因为你忽略了 deepseek 的 ...
2025-02-12自学 Python 的关键在于高效规划 + 实践驱动。以下是一份适合零基础快速入门的自学路径,结合资源推荐和实用技巧: 一、快速入 ...
2025-02-12“我们的利润率上升了,但销售额却没变,这是为什么?” “某个业务的市场份额在下滑,到底是什么原因?” “公司整体业绩 ...
2025-02-08活动介绍 为了助力大家在数据分析领域不断精进技能,我们特别举办本期打卡活动。在这里,你可以充分利用碎片化时间在线学习,让 ...
2025-02-071、闺女,醒醒,媒人把相亲的带来了。 我。。。。。。。 2、前年春节相亲相了40个, 去年春节相亲50个, 祖宗,今年你想相多少个 ...
2025-02-06在数据科学的广阔领域中,统计分析与数据挖掘占据了重要位置。尽管它们常常被视为有关联的领域,但两者在理论基础、目标、方法及 ...
2025-02-05在数据分析的世界里,“对比”是一种简单且有效的方法。这就像两个女孩子穿同一款式的衣服,效果不一样。 很多人都听过“货比三 ...
2025-02-05当我们只有非常少量的已标记数据,同时有大量未标记数据点时,可以使用半监督学习算法来处理。在sklearn中,基于图算法的半监督 ...
2025-02-05考虑一种棘手的情况:训练数据中大部分样本没有标签。此时,我们可以考虑使用半监督学习方法来处理。半监督学习能够利用这些额 ...
2025-02-04一、数学函数 1、取整 =INT(数字) 2、求余数 =MOD(除数,被除数) 3、四舍五入 =ROUND(数字,保留小数位数) 4、取绝对值 =AB ...
2025-02-03作者:CDA持证人 余治国 一般各平台出薪资报告,都会哀嚎遍野。举个例子,去年某招聘平台发布《中国女性职场现状调查报告》, ...
2025-02-02真正的数据分析大神是什么样的呢?有人认为他们能轻松驾驭各种分析工具,能够从海量数据中找到潜在关联,或者一眼识别报告中的数 ...
2025-02-01现今社会,“转行”似乎成无数职场人无法回避的话题。但行业就像座围城:外行人看光鲜,内行人看心酸。数据分析这个行业,近几年 ...
2025-01-31本人基本情况: 学校及专业:厦门大学经济学院应用统计 实习经历:快手数据分析、字节数据分析、百度数据分析 Offer情况:北京 ...
2025-01-3001专家简介 徐杨老师,CDA数据科学研究院教研副总监,主要负责CDA认证项目以及机器学习/人工智能类课程的研发与授课,负责过中 ...
2025-01-29