编辑:Mika
作者:CDA持证人 姜寿明
主持人:
大家好,今天CDA持证人专访我们邀请到了姜寿明,寿明目前是在一家金融科技公司从事咨询和方案解决的工作。
欢迎寿明,和大家打个招呼吧!
嘉宾:
大家好,我叫姜寿明。
我目前在一家金融科技公司从事咨询和解决方案工作。本科读的信息与计算科学专业,一半数学一半计算机课程,也算是经过了一些统计学、数据库和软件编程的初级的、系统化的学习和训练。研究生读的管理科学与工程。
主持人:
我比较好奇在咨询和解决方案这一块儿会利用到数据分析吗?
嘉宾:
会的,应用场景其实挺多的。
主持人:
能举几个业务的例子,具体展开给大家讲讲吗?
嘉宾:
没问题。我举两类应用场景。
第一类是企业经营管理类场景。
随着市场经济的发展,中大型企业面向的市场、客户规模和复杂度不断增加,经营数据的收集汇总过程变得越来越耗时。这时面向管理层的经营情况汇报时间也不断延长,因为这个时候从基础数据已经看不出结论来了,管理层提出的每个问题都需要结合很多方面的信息来回答。
这种情况下就需要构建企业的数据平台,连接打通前后台各类IT系统数据,利用数据分析的方法论和工具对大量基础数据进行加工处理和分析呈现。
所以现在很多中大型企业都开启了数字化转型,开始建设面向经营管理分析的数据看板、管理驾驶舱等等,大家也能明显感觉得到,近几年招聘市场上对掌握数字化转型、数据分析等方面技能的人才需求也在持续增长。
主持人:
那就是老板不会看基础数据,更多的是看结果数据和原因,要想解释数据的结果就需要从数据里找原因对吧,那第二类呢?
嘉宾:
第二类是项目管理分析场景。
以我目前所在的公司为例,作为一家规模较大的金融科技企业,要负责建设规模庞大的IT应用系统,服务于各类复杂的业务需求。
但是随着技术的不断发展,应用系统需要持续进行迭代升级,每次涉及到技术架构升级往往需要数百个项目并行实施并进行有效的项目群管理。
这种情况下利用传统的、简单的数据报表已经难以清晰地展现项目的全貌和关键信息,也需要借助数据分析方法和工具,基于项目群整体推进基础数据,进行多维度透视分析、全局进展跟踪和风险及时预警,并以自动化、可视化的方式进行呈现,辅助项目管理和推进。
这两类都是我作为咨询和解决方案顾问实际经历和参与过的场景,其他类型的场景其实还有很多。
主持人:
好的,我看到您读书期间,数学课程占一半,身边也有很多想从事数据分析的朋友问得比较多的一个问题就是,从事金融数据行业,数学是不是要特别好呢?
嘉宾:
也不是。
金融数据行业是一个比较泛化的概念,可能证券分析师、基金经理、金融大数据分析工程师这类职业岗更贴近一些,需要对市场交易数据进行建模预测,优化投资模型,或者设计开发相关的算法和软件来服务于金融场景业务决策等,这些工作要求具备一定的数学功底。
其他方面的岗位类型,包括我这种咨询解决方案类的,更多的是要求理解业务、理解数据,利用数据分析方法论和工具,更有效率、更直观、全面地组织数据和呈现结论,并不需要掌握复杂的数学理论或者算法。当然如果数学功底好绝对是加分项,在学习和掌握相关理论和工具的时候,能够更快地理解原理并上手使用。
主持人:
从事金融行业的数据分析师,您觉得哪些业务知识是必学的?如何更好地进阶自己?
嘉宾:
业务知识的话,我觉得需要看服务的企业性质、业务类型以及岗位类型。
企业性质来说,比如你在银行、保险、证券公司,要求的业务知识是不同的,你起码要了解相应业务的一些专业术语、常见通用的业务逻辑和规则,才能跟业务人员进行有效地沟通,理解业务目标,进而开展数据分析工作。
业务类型来说,2B业务和2C业务要求的能力也是不同的,前者可能要求掌握一些采购、销售、物流、存货以及财务等相关知识,具备一定的公司经营规划与分析能力,后者则需要对互联网化的数据运营方法有所了解。
岗位类型就比较具体了,比如你做投资分析,你需要掌握系统的金融学、经济学理论以及投资分析方法。
主持人:
作为CDA持证人,对于证书备考有什么攻略可以给大家分享一下吗?
嘉宾:
我的备考攻略主要有两点吧:
第一点是,考试大纲和模拟题一定要好好看、好好做。
这个证书涉及的相关知识面还是比较广的,考试大纲能够帮助我们聚焦一些关键的知识模块重点学习,备考阶段也需要回顾一下进行知识点的查漏补缺。
模拟题最好整体学习完成之后再做,毕竟套数有限,如果每套题都能得分在七八十分以上,那么直接报名考试还是比较有把握通过的,做完题目之后也要重点针对错题进行分析、识别知识盲区,并进行迁移补漏。
第二点是,做笔记还是很有必要的。
笔记可以帮助我们记录要点、加深印象,在系统化学习的时候,前后知识点是有关联的或者互为基础的,往往学习后面的需要回顾前面的知识,如果有笔记在的话,会节省很多时间。
另外,在学习、备考战线拉得比较长的时候,需要反复复习笔记来对抗遗忘,以及最后集中备考复习那几天需要有足够的弹药。
主持人:
对于即将踏入金融数据分析的小伙伴,您有什么经验可以给大家分享一下吗?
嘉宾:
分享两点我个人的理解吧。
第一点,我们需要不断学习掌握复杂的工具。
这里的工具是广义的,可以是理论、算法、模型、软件等,通过复杂工具的掌握来提升工作效率和效果,而且往往工具越复杂,提升程度就越明显,因为效率提升的部分就是工具自动帮助我们完成的部分;降本增效是公司经营不变的主题,我们持续利用工具提升个人效率、提升组织的工作效率,就能给企业带来更多利润,凸显我们的岗位价值。
第二点,我觉得数据分析岗位要往上不断进阶。
一定要与业务目标深入结合,通过长期聚焦在某一个或者某几个业务领域跟数据打交道,沉淀总结一些分析问题的常用切入点和独特视角,培养自己的数据敏感度,最终形成业务诊断能力,成为一名用户增长专家、客户营销专家、或者企业风控专家,这是作为一个数据分析岗位应该及早树立的目标和努力的方向。
主持人:
好的,谢谢寿明的分享。
不愧是做解决方案的,回答的每一个问题都像是在给一个个解决方案。寿明结合自己的工作业务给大家分享了金融业务场景的类型,具体的工作岗位还需要掌握专业领域的知识,更是在CDA认证备考,以及要从事金融数据分析师的小伙伴提出了自己的建议。
再次感谢寿明接受我们的专访,我们下期再见!拜拜 !
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16