这一次,和你解释清楚!
》CDA常老师:SASEG是面向长期存在数据分析,大型企业中商业报告的人员设计的课程。只有本公司有健全的IT环境(oracleteradatasqlserver等数据库,需要经常性的做报表)情况下才需要学习本软件。该软件可以提供全方位的企业商业智能(BI)服务。但是学习难度大,需要涉及编程内容。学习该课程的学员一般是企业的IT人员转数据分析岗位的、金融国企的员工,因为该公司已经购买了该软件。SPSS是面向业务为主导,数据为辅助的工作人员的培训课程。以分析型市场营销人才、分析型财务人才这些不满足用EXCEL作数据分析的人员。该软件在咨询机构、大型企业中的非数据分析核心部门、中小企业等运用最为广泛。学习该课程的学员一般是各类咨询顾问、管理人员、新型分析型业务人员。学习SASEG和SPSS中的任何一门都可以完全覆盖CDA一级的认证内容。
所以基于效益最大化原则,如果是完全一张白纸的初学者,建议还是从SPSS入手比较好。之后我会推荐SAS。
【开课信息】
时间:8月06日-8月28日@北京朝阳/远程-基于SPSS
【课程大纲】
CDA课程安排 |
课程 |
大纲简介 |
预期效果 |
第一阶段
|
《数据分析师基础理论》 |
行业分析,常用方法,统计基础,Excel数据分析。 |
零基础入门,掌握数据分析常用方法、基本原理及分析思路 |
第二阶段
|
《数据处理技术》 |
基于SPSS/SAS EG工具手把手教学操作,数据的录入、整理、清洗、处理、分析、输出、解读等。 |
掌握一门专业数据分析软件,会使用软件进行数据处理及分析。 |
第三阶段
|
《数据建模分析》 |
基于SPSS/SAS EG数据建模,方差、回归、分类、主成份、因子、聚类、多元、时间序列等数据分析模型。数据可视化,结果输出及解读。 |
熟悉各模型应用环境,学会自行建模分析,独立完成数据分析工作,并能输出图表解读数据现实意义。 |
第四阶段
|
《案例分析及业务应用》 |
电信,金融,电商,零售等实际案例分析;BI、文本挖掘、大数据、智慧城市等前沿技术。 |
通过真实案例举一反三,熟悉整个数据分析流程;了解前沿技术,增强业务与技术对接能力。 |
【学员对象】
1. 各行业数据分析、数据挖掘基础薄弱从业者
2. 在校数学,经济,计算机,统计等专业教师和学生
3. 经济,医学生物研究院科研人员
4. 数据分析,数据挖掘兴趣爱好者及转行人士
【讲师介绍】
数据分析金牌团队:CDA数据分析研究院讲师团队,大陆、台湾等高校著名教师以及知名企业资深数据分析师
常国珍,会计学博士、社会学硕士,毕业于北京大学人口所,目前就读于北大光华管理学院,SAS公司数据挖掘与统计分析课程讲师。曾就职于方正国际金融事业部和长江商学院投资者研究中心。主持过商业银行数据挖掘平台建设、商业银行信用评分模型的构建与固化等商业项目。参与构建的股票量化投资模型被某大型基金公司采纳,并于2013年九月正式发行。
曹正凤,男,统计学实验师,博士学位,具有十几年统计教学经验。最新研究随机森林遗传算法,参与《大数据背景下基于中国烟草消费需求的供给结构分析研究》项目,《基于大数据整合的空气质量测度方法研究》,项目进入实施阶段。先为CDA基础理论讲师,对于统计学教学有丰富的经验。
翟祥,人民大学统计学博士,北京林业大学管理学院统计系教授,SAS公司骨灰级讲师。长期从事金融、电信、零售行业数据挖掘咨询工作。
徐老师,男,高级数据分析师,具有深厚的数理统计与应用数据分析专业背景,上海某金融机构数据分析部门高级DA,具有八年数据分析、数据挖掘的从业经验,曾就职零售企业、咨询公司等,独立或带团队完成零售、电信、金融等多个大型数据挖掘项目。
丁亚军,男,首席数据分析师,兼职中国学习路径图国际培训中心技术顾问,SAS、SPSS高级统计学讲师。曾参与2012国家宏观经济预测、中国城镇居民家庭投资调查、泸州老窖目标管理与绩效考核等大型数据处理项目,具有丰富的数据处理经验。
【课程优惠】
1. 全日制在读学生8折优惠
2. 参加过论坛其他现场班老学员9折优惠
3. 同一单位三人及以上报名9折优惠,五人及以上8折优惠
4. 同时报名参加LEVELⅠ和LEVEL Ⅱ享受8折优惠
5. 零基础学员建议同时报名CDA数据分析员课程,立减400元。
【关于证书】
CDA数据分析师等级认证证书
(此证书为CDA中英文等级认证证书Level Ⅰ,全国统考,一年两次,此证书为CDA数据分析师认证证书,可以作为企业事业单位选拔和聘用专业人才的任职参考依据。)
【报名流程】
1.在线填写报名信息
2.给予反馈,确认报名信息
3.网上缴费
4.开课前一周发送电子版课件和教室路线图
数据分析咨询请扫描二维码
《Python数据分析极简入门》 第2节 5 Pandas数学计算 importpandasaspdd=np.array([[81,&n ...
2024-11-23数据分析涉及多个方面的学习,包括理论知识和实践技能。以下是数据分析需要学习的主要方面: 基础知识: 数据分析的基本概念 ...
2024-11-22数据分析适合在多个单位工作,包括但不限于以下领域: 金融行业:金融行业对数据分析人才的需求非常大,数据分析师可以从事经 ...
2024-11-22数据分析是一种涉及从大量数据中提取有用信息和洞察力的过程。其工作内容主要包括以下几个方面: 数据收集与整理:数据分析师 ...
2024-11-22数据分析师需要掌握多种技能,以确保能够有效地处理和分析数据,并为业务决策提供支持。以下是数据分析师需要掌握的主要技能: ...
2024-11-22数据开发和数据分析是两个密切相关但又有所区别的领域。以下是它们的主要区别: 定义和目标: 数据开发:数据开发涉及数据的 ...
2024-11-22数据架构师是负责设计和管理企业数据架构的关键角色,其职责涵盖了多个方面,包括数据治理、数据模型设计、数据仓库构建、数据安 ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21