用因子分析结果进行聚类分析
得到因子得分并不是最终的结果,降维是为了使我们的思路更加集中,但降维结束后得到的却未必是我们所期望的。为了更好的加以分析,我们可以在降维因子分析的基础上对得到的潜在因子进行聚类或者计算出综合因子得分进行排序。综合因子得分的计算前面我已经讨论过了,卢老师的书里介绍了因子分析之后进行聚类分析,放在这里学习学习。
【案例】:美国洛杉矶12个地区的调查数据(人口、校龄、总雇员、房价、服务),该数据可到经管之家论坛spss版块下载。
【案例说明】:12个地区的5个调查指标数据经过因子分析处理后,找到两个潜在的因子:人口因子和福利因子。并且spss自动保存了12个地区的因子得分。这个案例的目的在于评价12个地区经济情况。我们现在走一条曲线救国的思路:利用人口因子和福利因子两个变量进行聚类,看看这12个地区有哪些是相似的(同一类),这些相似的地区有哪些特征,从而集中评价属于同一类的某几个或一个地区。
一、操作:
(1)因子1,因子2为参与聚类的变量,地区编号为标示。
(2)盲聚类,先给定范围2-4类,然后对2、3、4进行比较,最终确定聚为几类。
(3)个人较喜欢输出树状图,讨厌冰柱图。要求输出聚类的树状图。采用欧氏距离平方聚类。
(4)不需要进行标准化处理,因为两个因子本身就是无量纲变量。
二、重要结果(对比):
(1)从聚类分析输出结果很难看出各地区在经济特性方面的区别。
(2)亮点:因子得分-类别散点图,可视化的效果。
上图显示,2、3、7为第二类,处在人口因子和福利因子都较低的左角,可以认为从5个经济指标来看均较差的地区;1、4、5为第一类,人口因子(人口数和就业人数)得分较低,福利因子较高,即人口和就业者较少,但福利条件去很不错的地区群(这可是梦寐以求的好地方啊!);6、8、9、11、12为第三类人口因子较高,福利因子较低,人口多,就业者多,比如hn,人口第一大省,但整体经济实力较东部地区差,福利跟不上。
做法:因子得分2为纵轴、因子得分1为横轴(谁横谁纵没有定论),用地区编号标识地区,用聚类得到的各地区类别号分组。(依次做分为2类的、3类的、4类的散点图进行比较)。
三、讨论:
就此案例而言,最终聚为几类合适?我个人的思路:从上面的散点图可以看出,编号为10的这个地区,偏离1、5、4地区较远,聚类过程显示这四个地区为同一类。鉴于1、5、4更集中,10地区较远,用异常值的思想来讲,10地区为异常值,单独放一边讨论,视为特例对待。其他11个地区分为3类。即最终聚为4类(或3类+1特例)。
从这个案例可以看出,我们很有必要在spss既得结果中提取其他可视化图形,比如上面这个因子得分散点图,使分析效果更加显著。
数据分析咨询请扫描二维码
在准备数据分析师面试时,掌握高频考题及其解答是应对面试的关键。为了帮助大家轻松上岸,以下是10个高频考题及其详细解析,外加 ...
2024-12-20互联网数据分析师是一个热门且综合性的职业,他们通过数据挖掘和分析,为企业的业务决策和运营优化提供强有力的支持。尤其在如今 ...
2024-12-20在现代商业环境中,数据分析师是不可或缺的角色。他们的工作不仅仅是对数据进行深入分析,更是协助企业从复杂的数据信息中提炼出 ...
2024-12-20随着大数据时代的到来,数据驱动的决策方式开始受到越来越多企业的青睐。近年来,数据分析在人力资源管理中正在扮演着至关重要的 ...
2024-12-20在数据分析的世界里,表面上的技术操作只是“入门票”,而真正的高手则需要打破一些“看不见的墙”。这些“隐形天花板”限制了数 ...
2024-12-19在数据分析领域,尽管行业前景广阔、岗位需求旺盛,但实际的工作难度却远超很多人的想象。很多新手初入数据分析岗位时,常常被各 ...
2024-12-19入门数据分析,许多人都会感到“难”,但这“难”究竟难在哪儿?对于新手而言,往往不是技术不行,而是思维方式、业务理解和实践 ...
2024-12-19在如今的行业动荡背景下,数据分析师的职业前景虽然面临一些挑战,但也充满了许多新的机会。随着技术的不断发展和多领域需求的提 ...
2024-12-19在信息爆炸的时代,数据分析师如同探险家,在浩瀚的数据海洋中寻觅有价值的宝藏。这不仅需要技术上的过硬实力,还需要一种艺术家 ...
2024-12-19在当今信息化社会,大数据已成为各行各业不可或缺的宝贵资源。大数据专业应运而生,旨在培养具备扎实理论基础和实践能力,能够应 ...
2024-12-19阿里P8、P9失业都找不到工作?是我们孤陋寡闻还是世界真的已经“癫”成这样了? 案例一:本硕都是 985,所学的专业也是当红专业 ...
2024-12-19CDA持证人Louis CDA持证人基本情况 我大学是在一个二线城市的一所普通二本院校读的,专业是旅游管理,非计算机非统计学。毕业之 ...
2024-12-18最近,知乎上有个很火的话题:“一个人为何会陷入社会底层”? 有人说,这个世界上只有一个分水岭,就是“羊水”;还有人说,一 ...
2024-12-18在这个数据驱动的时代,数据分析师的技能需求快速增长。掌握适当的编程语言不仅能增强分析能力,还能帮助分析师从海量数据中提取 ...
2024-12-17在当今信息爆炸的时代,数据分析已经成为许多行业中不可或缺的一部分。想要在这个领域脱颖而出,除了热情和毅力外,你还需要掌握 ...
2024-12-17数据分析,是一项通过科学方法处理数据以获取洞察并支持决策的艺术。无论是在商业环境中提升业绩,还是在科研领域推动创新,数据 ...
2024-12-17在数据分析领域,图表是我们表达数据故事的重要工具。它们不仅让数据变得更加直观,也帮助我们更好地理解数据中的趋势和模式。相 ...
2024-12-16在当今社会,我们身处着一个飞速发展、变化迅猛的时代。不同行业在科技进步、市场需求和政策支持的推动下蓬勃发展,呈现出令人瞩 ...
2024-12-16在现代商业世界中,数据分析师扮演着至关重要的角色。他们通过解析海量数据,为企业战略决策提供有力支持。要有效完成这项任务, ...
2024-12-16在当今数据爆炸的时代,数据分析师是组织中不可或缺的导航者。他们通过从大量数据中提取可操作的洞察力,帮助企业在竞争激烈的市 ...
2024-12-16