用因子分析结果进行聚类分析
得到因子得分并不是最终的结果,降维是为了使我们的思路更加集中,但降维结束后得到的却未必是我们所期望的。为了更好的加以分析,我们可以在降维因子分析的基础上对得到的潜在因子进行聚类或者计算出综合因子得分进行排序。综合因子得分的计算前面我已经讨论过了,卢老师的书里介绍了因子分析之后进行聚类分析,放在这里学习学习。
【案例】:美国洛杉矶12个地区的调查数据(人口、校龄、总雇员、房价、服务),该数据可到经管之家论坛spss版块下载。
【案例说明】:12个地区的5个调查指标数据经过因子分析处理后,找到两个潜在的因子:人口因子和福利因子。并且spss自动保存了12个地区的因子得分。这个案例的目的在于评价12个地区经济情况。我们现在走一条曲线救国的思路:利用人口因子和福利因子两个变量进行聚类,看看这12个地区有哪些是相似的(同一类),这些相似的地区有哪些特征,从而集中评价属于同一类的某几个或一个地区。
一、操作:
(1)因子1,因子2为参与聚类的变量,地区编号为标示。
(2)盲聚类,先给定范围2-4类,然后对2、3、4进行比较,最终确定聚为几类。
(3)个人较喜欢输出树状图,讨厌冰柱图。要求输出聚类的树状图。采用欧氏距离平方聚类。
(4)不需要进行标准化处理,因为两个因子本身就是无量纲变量。
二、重要结果(对比):
(1)从聚类分析输出结果很难看出各地区在经济特性方面的区别。
(2)亮点:因子得分-类别散点图,可视化的效果。
上图显示,2、3、7为第二类,处在人口因子和福利因子都较低的左角,可以认为从5个经济指标来看均较差的地区;1、4、5为第一类,人口因子(人口数和就业人数)得分较低,福利因子较高,即人口和就业者较少,但福利条件去很不错的地区群(这可是梦寐以求的好地方啊!);6、8、9、11、12为第三类人口因子较高,福利因子较低,人口多,就业者多,比如hn,人口第一大省,但整体经济实力较东部地区差,福利跟不上。
做法:因子得分2为纵轴、因子得分1为横轴(谁横谁纵没有定论),用地区编号标识地区,用聚类得到的各地区类别号分组。(依次做分为2类的、3类的、4类的散点图进行比较)。
三、讨论:
就此案例而言,最终聚为几类合适?我个人的思路:从上面的散点图可以看出,编号为10的这个地区,偏离1、5、4地区较远,聚类过程显示这四个地区为同一类。鉴于1、5、4更集中,10地区较远,用异常值的思想来讲,10地区为异常值,单独放一边讨论,视为特例对待。其他11个地区分为3类。即最终聚为4类(或3类+1特例)。
从这个案例可以看出,我们很有必要在spss既得结果中提取其他可视化图形,比如上面这个因子得分散点图,使分析效果更加显著。
数据分析咨询请扫描二维码
数据分析师需要具备一系列技能,以确保能够有效地处理、分析和解释数据,从而支持决策制定。以下是数据分析师所需的关键技能: ...
2024-11-22数据分析师需要具备一系列的技能和能力,以确保能够有效地处理、分析和解释数据,从而支持业务决策。以下是数据分析师所需的主要 ...
2024-11-22需求持续增长 - 未来数据分析师需求将持续上升,企业对数据驱动决策的依赖加深。 - 预测到2025年,中国将需要高达220万的数据人 ...
2024-11-22《Python数据分析极简入门》 第2节 4 Pandas条件查询 在pandas中,可以使用条件筛选来选择满足特定条件的数据 importpanda ...
2024-11-22数据分析师的工作内容涉及多个方面,主要包括数据的收集、整理、分析和可视化,以支持商业决策和问题解决。以下是数据分析师的一 ...
2024-11-21数据分析师必须掌握的技能可以从多个方面进行归纳和总结。以下是数据分析师需要具备的主要技能: 统计学基础:数据分析师需要 ...
2024-11-21数据分析入门的难易程度因人而异,总体来看,入门并不算特别困难,但需要一定的学习和实践积累。 入门难度:数据分析入门相对 ...
2024-11-21数据分析是一项通过收集、整理和解释数据来发现有用信息的过程,它在现代社会中具有广泛的应用和重要性。数据分析能够帮助人们更 ...
2024-11-21数据分析行业正在迅速发展,随着技术的不断进步和数据量的爆炸式增长,企业对数据分析人才的需求也与日俱增。本文将探讨数据分析 ...
2024-11-21数据分析的常用方法包括多种技术,每种方法都有其特定的应用场景和优势。以下是几种常见的数据分析方法: 对比分析法:通过比 ...
2024-11-21企业数字化转型是指企业利用数字技术对其业务进行改造和升级,以实现提高效率、降低成本、创新业务模式等目标的过程。这一过程不 ...
2024-11-21数据分析作为一个备受追捧的职业领域,吸引着越来越多的女性加入其中。对于女生而言,在选择成为一名数据分析师时,行业选择至关 ...
2024-11-21大数据技术专业主要学习计算机科学、数学、统计学和信息技术等领域的基础理论和技能,旨在培养具备大数据处理、分析和应用能力的 ...
2024-11-21《Python数据分析极简入门》 第2节 3 Pandas数据查看 这里我们创建一个DataFrame命名为df: importnumpyasnpi ...
2024-11-21越老越吃香的行业主要集中在需要长时间经验积累和专业知识的领域。这些行业通常知识更新换代较慢,因此随着年龄的增长,从业者能 ...
2024-11-20数据导入 使用pandas库的read_csv()函数读取CSV文件或使用read_excel()函数读取Excel文件。 支持处理不同格式数据,可指定分隔 ...
2024-11-20大数据与会计专业是一门结合了大数据分析技术和会计财务理论知识的新型复合型学科,旨在培养能够适应现代会计业务新特征的高层次 ...
2024-11-20要成为一名数据分析师,需要掌握一系列硬技能和软技能。以下是成为数据分析师所需的关键技能: 统计学基础 理解基本的统计概念 ...
2024-11-20是的,Python可以用于数据分析。Python在数据分析领域非常流行,因为它拥有丰富的库和工具,能够高效地处理从数据清洗到可视化的 ...
2024-11-20在这个数据驱动的时代,数据分析师的角色变得愈发不可或缺。他们承担着帮助企业从数据中提取有价值信息的责任,而这些信息可以大 ...
2024-11-20