作者:丁点helper
来源:丁点帮你
今天我们开始一个新的主题——生存分析。什么叫生存分析?为什么要采用生存分析呢?
前面我们一起学习的多重线性回归和Logistic回归都主要是用来分析某个结果的影响因素,比如教育程度对收入的影响,或者,糖尿病发生与否的影响因素,这些方法主要是在静态地分析某一个特定的结果。
可是,倘若我们不仅仅关心结果的发生情况(发病VS未发病),同时我们也想看看发生该结果所经历的时间长短,此时,简单的线性或Logistic回归就难以满足这个需求,而生存分析可以来回答这类似的问题。
生存数据
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
一般来讲,在医学科研中,生存分析较多应用在肿瘤病人的治疗方案评价方面。
这是因为对于癌症患者,我们往往更加关注的是”生存时间“,比如经常听到的:5年存活率、3年存活率... 而某种治疗方法的价值也主要表现在延长患者的存活时间。
比如在一项针对肺癌患者的研究中,研究者可能会关注下面三个问题:
1)肺癌患者接受治疗后的生存状况如何?
2)哪种疗法的效果最好?
3)这些患者在接受治疗后的生存状况与哪些因素有关?
我们可以看到,这三个问题的答案不可能简单地通过最终的治疗结果来衡量:治愈VS未治愈。
原因很简单也很残酷,癌症不像感冒那样,不是看治好还是没治好,让患者存活更多时间、存活地更体面成为人们追求的目标。
好了,回到我们的主题,如何掌握生存分析,并且灵活地运用呢?
第一步是对下面几个基本的概念有一个清晰的认识。
生存数据:前面我们说到了,在某些研究中,除了要关注某结局事件的发生与否,还会考虑发生该结局所经历的时间长短,这种兼有时间和结局两种属性的数据,就被称作生存数据。
这种将事件结局的出现与否和达到终点所经历的时间结合起来的统计方法就被称作生存分析。
由此,在进行生存分析时对”起点”、”终点“、以及”所经历的时间“(生存时间)都有十分明确的定义。专业术语一般称为:
观察起点(或称起点事件)、观察终点(终点事件)和时间间隔。
生存时间的确定
多重线性回归,一般是指有多个自变量X,只有一个因变量Y。前面我们主要是以简单线性回归为例在介绍,两者的差距主要在于自变量X的数量,在只有一个X时,就称简单线性回归。
案例:某研究搜集了2013年1月1日至2015年12月31日间肺癌患者的资料,以了解患者接受治疗后的生存情况及其可能的影响因素。
前面谈到生存分析很关键的一点是确定生存时间,而确定生存时间最重要的是确定好观察起点和终点。
在本案例中,2013年1月1日是观察起点;2015年12月31日是观察终点,问题是并非所有人都是在起点进入观察,也并非在终点就正好发生结局(即死亡)。因此,我们需要做好相应的记录。
对于起点,观察对象可以在起点同时进入观察,也可以在不同时间点进入观察,如下A、B两种形式:
A:所有观察对象在同一时间点接受观察;
B:观察对象在不同时间点接受观察。
上图中,带点的空心圆圈表示出现终点事件,带加号的圆圈表示尚未出现终点事件。
对于终点的判断,要稍微复杂一下。
本案例的具体数据如下:
我们先不细看上面的数据,想这样一个问题:从开始观察(2013/1/1)到观察终止(2015/12/31),所有的观察对象会有哪些情况发生呢?
1)观察期内,能够正常的随访,但在观察终点前因肺癌死亡;
2)观察期内,正常随访一段时间就断了联系,后面的情况一概不清楚;
3)观察期内,能够正常随访,但在终点前因其他原因死亡的;
4)从开始观察到终止观察,一直存活的对象。
大家想想,是不是所有的观察对象都是这四种情况?是的
符合上面第一种情况的数据,我们一般称作完全数据(complete data),如上表中编号为1和3的患者,生存时间分别为23个月和13个月。
完全数据提供的是准确的生存时间。除了”完全数据“,其他的所有情况(即上面的2-4情况)所获得的数据均称作”删失数据“(censored data),有时也被称作”截尾数据“。
上表中的2号患者,属于”失访“导致的”删失“,患者可能变更联系方式、未继续就诊或拒绝访问等原因,无法继续随访,未能观察到终点事件。
另外两种”删失“情况对应上面第3)和第4)种情况:
比如表格中的编号4的患者,虽然死亡,但是死于车祸,这种”删失“称作”退出“;
5号患者在观察终点时仍然存活,这种情况称作”终止“。
一般来讲,我们会在删失数据的”生存时间“数据右上角标记”+“,表示真实的生存时间可能长于观察到的时间,但是未知。
对于生存时间单位的选择并没有特别的限制,可以是年、月、日,或小时等,一般呈现非正态分布,所以在进行生存分析时需进行特定的调整,对此,我们后续再谈。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在如今这个信息爆炸的时代,数据已然成为企业的生命线。无论是科技公司还是传统行业,数据分析正在深刻地影响着商业决策以及未来 ...
2025-01-08“数据为王”相信大家都听说过。当前,数据信息不再仅仅是传递的媒介,它成为了驱动经济发展的新燃料。对于企业而言,数据指标体 ...
2025-01-07在职场中,当你遇到问题的时候,如果感到无从下手,或者抓不到重点,可能是因为你掌握的思维模型不够多。 一个好用的思维模型, ...
2025-01-06在现代企业中,数据分析师扮演着至关重要的角色。每天都有大量数据涌入,从社交媒体到交易平台,数据以空前的速度和规模生成。面 ...
2025-01-06在职场中,许多言辞并非表面意思那么简单,有时需要听懂背后的“潜台词”。尤其在数据分析的领域里,掌握常用术语就像掌握一门新 ...
2025-01-04在当今信息化社会,数据分析已成为各行各业的核心驱动力。它不仅仅是对数字进行整理与计算,而是在数据的海洋中探寻规律,从而指 ...
2025-01-03又到一年年终时,各位打工人也迎来了展示成果的关键时刻 —— 年终述职。一份出色的年终述职报告,不仅能全面呈现你的工作价值, ...
2025-01-03在竞争激烈的商业世界中,竞品分析对于企业的发展至关重要。今天,我们就来详细聊聊数据分析师写竞品分析的那些事儿。 一、明确 ...
2025-01-03在数据分析的江湖里,有两个阵营总是争论不休。一派信奉“大即是美”,认为数据越多越好;另一派坚守“小而精”,力挺质量胜于规 ...
2025-01-02数据分析是一个复杂且多维度的过程,从数据收集到分析结果应用,每一步都是对信息的提炼与升华。可视化分析结果,以图表的形式展 ...
2025-01-02在当今的数字化时代,数据分析师扮演着一个至关重要的角色。他们如同现代企业的“解密专家”,通过解析数据为企业提供决策支持。 ...
2025-01-02数据分析报告至关重要 一份高质量的数据分析报告不仅能够揭示数据背后的真相,还能为企业决策者提供有价值的洞察和建议。 年薪 ...
2024-12-31数据分析,听起来好像是技术大咖的专属技能,但其实是一项人人都能学会的职场硬核能力!今天,我们来聊聊数据分析的核心流程,拆 ...
2024-12-31提到数据分析,你脑海里可能会浮现出一群“数字控”抱着电脑,在海量数据里疯狂敲代码的画面。但事实是,数据分析并没有你想象的 ...
2024-12-31关于数据分析师是否会成为失业高危职业,近年来的讨论层出不穷。在这个快速变化的时代,技术进步让人既兴奋又不安。今天,我们从 ...
2024-12-30数据分析师在现代企业中扮演着关键角色,他们的工作内容不仅丰富多样,还对企业的决策和发展起着重要的作用。正如一个经验丰富的 ...
2024-12-29数据分析师的能力要求 在当今的数据主导时代,数据分析师的角色变得尤为重要。他们不仅需要具备深厚的技术背景,还需要拥有业务 ...
2024-12-29随着技术的飞速发展与行业的持续变革,不少人心中都存有疑问:到了 2025 年,数据分析师还有前途吗?给你分享一篇阿里P8大佬最近 ...
2024-12-29如何构建数据分析整体框架? 要让数据分析发挥其最大效能,建立一个清晰、完善的整体框架至关重要。今天,就让我们一同深入探讨 ...
2024-12-27AI来了,数分人也可以很省力,今天给大家介绍7个AI+数据分析工具,建议收藏。 01酷表 EXCEL 网址:https://chatexcel.com/ 这是 ...
2024-12-26